第51卷第3期2023年3月华中科技大学学报(自然科学版)J.HuazhongUniv.ofSci.&Tech.(NaturalScienceEdition)Vol.51No.3Mar.2023基于特征点网络的三维注册算法李永杰荣晗戈张秀山(海军工程大学电子工程学院,湖北武汉430033)摘要鉴于自然环境下光照变化和视角变化会导致图像特征点不稳定,影响三维注册的效果,为此提出了一种基于特征点提取网络的三维注册算法.首先网络使用并行支路提取图像的特征点与描述子;接着通过二分图进行特征匹配;最后完成三维注册.在HPatches数据集上的实验结果表明:特征点在光照变化和视角变化下的可重复率分别达到了67.7%和55.9%,图像匹配的mAP达到了94.15%.在Oxford数据集上mAP达到了93.42%,视频上三维注册正确率达到了95.4%.关键词增强现实;三维注册;深度学习;图论;图像配准中图分类号TP391文献标志码A文章编号1671-4512(2023)03-0031-073DregistrationalgorithmbasedonfeaturepointnetworkLIYongjieRONGHangeZHANGXiushan(CollegeofElectronicEngineering,NavalUniversityofEngineering,Wuhan430033,China)AbstractInthenaturalenvironment,thetransformsofilluminationandviewpointwillleadtotheinstabilityofimagefeaturepoints,andaffectthe3Dregistration.Therefore,a3Dregistrationalgorithmbasedonfeaturepointnetworkwasproposed.Firstly,parallelbrancheswereusedinthenetworktoextractimagefeaturepointsanddescriptors.Thenfeaturematchingwascarriedoutbybinarygraph.Finally,3Dregistrationwascompleted.TheresultsofexperimentsinHPatchesdatasetshowthattherepeatabilityreaches67.7%and55.9%inilluminationandviewpointtransform,andmeanaverageprecision(mAP)ofimageregistrationreaches94.15%.InOxforddataset,mAPofimageregistrationreaches93.42%,andinvideo,theaccuracyof3Dregistrationreaches95.4%.Keywordsaugmentedreality;3Dregistration;deeplearning;graphtheory;imageregistration随着元宇宙、虚拟现实、数字孪生等概念的发展,为了让三维的虚拟物体离开二维的平面显示器,并出现在物理世界中,增强现实技术也逐渐受到关注.如何实现环境稳定的三维注册,让增强现实从实验室内走向户外,让虚拟世界无形地融入到真实世界中,始终都是亟须解决的问题.以前三维注册通过在场景中布置平面二维码标记并使用相机进行定位[1],这样做破坏了原始的场景,丧失...