第44卷第2期2023年2月兵工学报ACTAARMAMENTARIIVol.44No.2Feb.2023DOI:10.12382/bgxb.2021.0662基于图特征学习的海杂波抑制算法陈鹏,许震,曹振新,王宗新(东南大学信息科学与工程学院毫米波国家重点实验室,江苏南京210096)摘要:为有效降低海杂波对海洋雷达的工作影响,研究海杂波的抑制问题,提出一种基于图特征学习的海杂波抑制算法。使用时频变换对雷达回波信号进行维度扩增,基于图嵌入处理深度挖掘图结构特征的思想,并依据海杂波和目标回波信号在时频谱中的不同结构特性,给出一种通过图嵌入进行信号节点特征向量构造的方法。区别于传统时域对消和子空间分解等方法,该方法可以通过时频谱中不同信号的节点分类实现海杂波的抑制。仿真与实测结果表明,该算法可以有效抑制雷达回波信号中的海杂波分量,提升雷达回波信号的信杂比,为海洋雷达进行海杂波的抑制提供了新的思路和途径。关键词:海杂波抑制;时频变换;图嵌入;图结构;节点分类中图分类号:TN957文献标志码:A文章编号:1000-1093(2023)02-0534-11GraphFeatureLearning-BasedSeaClutterSuppressionMethodCHENPeng,XUZhen,CAOZhenxin,WANGZongxin(StateKeyLaboratoryofMillimeterWaves,SchoolofInformationScienceandEngineering,SoutheastUniversity,Nanjing210096,Jiangsu,China)Abstract:InordertoreducetheeffectofseaclutteronMarineradar,aseacluttersuppressionalgorithmbasedongraphfeaturelearningisproposed.Thetime-frequencytransformisusedtoamplifythedimensionofradarechosignal,andbasedontheideathatthegraphstructurefeaturescanbedeeplyminedbygraphembeddingprocessing,amethodofconstructingsignalnodefeaturevectorbygraphembeddingispresentedaccordingtothedifferentstructuralcharacteristicsofseaclutterandtargetechosignalintimespectrum.Differentfromtraditionalmethodssuchastimedomaincancellationandsubspacedecomposition,thismethodcanbeusedtoimplementseacluttersuppressionthroughnodeclassificationofdifferentsignalsinthetimespectrum.Simulationandexperimentalresultsshowthatthealgorithmcaneffectivelysuppresstheseacluttercomponentofradarechosignal,improvethesignaltoclutterratioofradarechosignal,andprovideanewideaandwayforoceanradartosuppressseaclutter.Keywords:seacluttersuppression;time-freque...