·雷达系统与技术·DOI:10.16592/j.cnki.1004-7859.2022.12.016基于端到端网络机制跨域稀疏SAR与光学图像精准匹配方法黄柏圣(南京信息工程大学电子与信息工程学院,南京210044)摘要:由于合成孔径雷达(SAR)和光学图像两种模态之间存在显著的几何和辐射差异,传统方法难以实现SAR与光学图像的精准匹配。文中提出了一种基于端到端网络机制的跨域稀疏SAR与光学图像精准匹配方法。该方法首先预测每幅图像中最适合匹配的区域,然后通过多尺度特征空间互相关运算生成匹配热图,最后将匹配热图分为正匹配和负匹配来消除异常值,实现SAR与光学图像匹配的精确匹配。实验结果表明,所提方法性能指标优于已往SAR与光学图像匹配方法,可用于大规模场景的精确匹配,利于提升光学卫星图像的地理定位精度。关键词:图像配准;特征检测;深度学习;合成孔径雷达;光学图像中图分类号:TN957文献标志码:A文章编号:1004-7859(2022)12-00106-06引用格式:黄柏圣.基于端到端网络机制跨域稀疏SAR与光学图像精准匹配方法[J].现代雷达,2022,44(12):106-111.HUANGBaisheng.Accuratematchingmethodofcross-domainsparseSARandopticalimagebasedonend-to-enddeeplearningframework[J].ModernRadar,2022,44(12):106-111.AccurateMatchingMethodofCross-domainSparseSARandOpticalImageBasedonEnd-to-endDeepLearningFrameworkHUANGBaisheng(SchoolofElectronicsandInformationEngineering,NanjingUniversityofInformationScienceandTechnology,Nanjing210044,China)Abstract:Duetothesignificantgeometricandradiationdifferencesbetweensyntheticapertureradar(SAR)andopticalimages,itisdifficultfortraditionalmethodstoachieveaccuratematchingbetweenSARandopticalimages.Inthispaper,anaccuratematchingmethodbetweencrossdomainsparseSARandopticalimagebasedonend-to-endnetworkframeworkisproposed.Themethodfirstpredictstheregionthatisconsideredtobethemostsuitableformatchingineachimage,andthengeneratesthematchingheatmapthroughmulti-scalefeaturespacecross-correlationoperator.Finally,thematchingheatmapisclassifiedintopositiveandnegativematchingtoeliminateoutliersandachieveaccuratematchingbetweenSARandopticalimages.Theexperimentalresultsshowthatthattheproposedapproachprovidesasubstantial...