基于MCQRDDC的负荷概率预测模型①丁美荣1,张航1,2,蔡高琰2,李宇轩1,温兴1,严彬彬1,曾碧卿11(华南师范大学软件学院,佛山528225)2(广东浩迪创新科技有限公司,佛山528299)通信作者:张航,E-mail:2020023879@m.scnu.edu.cn摘要:针对具有约束性的复合分位数回归网络(monotonecompositequantileregressionneuralnetwork,MCQRNN)无法较好地分析负荷数据之中的时序信息和内在规律的问题,本研究融合MCQRNN以及膨胀因果卷积网络(dilatedcausalconvolutionalnetworks,DCC),提出了一种新的分位数回归模型MCQRDCC(monotonecompositequantileregressiondilatedcausalconvolutionalnetworks),该模型将输入划分为分位点输入与非约束输入,使该模型的输出随分位点的增大而增大,以此解决分位数交叉的问题.同时,使用DCC的结构,使该模型充分地分析负荷数据之中的序列信息,使得预测结果更加符合真实负荷的变化趋势.此外,MCQRNN使用指数函数对约束权重矩阵和隐藏层权重进行转化,会影响反向传播时权重的调整,本研究使用ReLU函数代替指数函数可以解决这个问题,以此提高预测的精度.使用真实的负荷数据进行实验,实验结果表明,MCQRDCC能有效地提高预测精度,相较于MCQRNN,其平均Pinball损失和CWC分别下降2.11%和9.31%,AIS提升了10.51%.关键词:负荷概率预测;分位数回归;分位数交叉;膨胀因果卷积网络;MCQRNN引用格式:丁美荣,张航,蔡高琰,李宇轩,温兴,严彬彬,曾碧卿.基于MCQRDDC的负荷概率预测模型.计算机系统应用,2023,32(2):281–287.http://www.c-s-a.org.cn/1003-3254/8941.htmlProbabilisticLoadForecastingModelBasedonMCQRDDCDINGMei-Rong1,ZHANGHang1,2,CAIGao-Yan2,LIYu-Xuan1,WENXing1,YANBin-Bin1,ZENGBi-Qing11(SchoolofSoftware,SouthChinaNormalUniversity,Foshan528225,China)2(HodiTechnologyCo.Ltd.,Foshan528299,China)Abstract:Monotonecompositequantileregressionneuralnetwork(MCQRNN)cannotanalyzethetimeseriesinformationandinternallawsinloaddatawell.Inordertoaddressthisissue,thisstudycombinesMCQRNNanddilatedcausalconvolutionalnetworks(DCC)andproposesanewquantileregressionmodelnamed,MCQRDCC.Thismodeldividestheinputintoquantileinputandunconstrainedinputtomaketheoutputofthemodelincreasewiththeincreaseinquantile,soastosolvetheproblemofquantilecrossing.Atthesametime,theDCCstructureisusedtohelpthemodelfullyanalyzethesequenc...