Piscataway,NJ,USA:InstituteofElectricalandElectronicsEngineers,2017:658666.[18]樊钰.基于深度学习的安全帽检测系统设计与实现[D].呼和浩特:内蒙古大学,2019.FANY.Designandimplementationofdetectionsystemofwearinghelmetsbasedondeeplearning[D].Huhhot:InnerMongoliaUniversity,2019.ResearchonthelightweightdetectionmethodofpersonhelmetwearingZHANGYu-tao,ZHANGMeng-fan,SHIXue-qiang,CHENXiao-kun,RENYao,LIURui(CollegeofSafetyScienceandEngineering,Xi'anUniversityofScienceandTechnology,Xi'an710054,China)Abstract:Theexistinghelmetdetectionalgorithmsbasedondeeplearninghavehighcomputationcomplexityandhighrequirementsforhardwarecomputingcapabilities,resultinginahighcostinactualapplications.Moreover,thediversityoftheshapeandscaleofthedetectiontargetsarenotfullyconsideredinexistingalgorithms,sotherealsoexistcommonproblemsofmissedandfalsedetectionofsmalltargets.Aimingattheaboveproblems,thispaperproposesalightweighthelmetdetectionmodelbasedonthePytorchdeeplearningframeworktoreducetheamountofcalculationofthemodel.Inaddition,adeformablebi-directionaggregationnetworkisproposedtotransfershallowdetailinformationanddeepsemanticinformationinabi-directionalway,therebyimprovingthemodel'sadaptabilitytodetecttargetsofdifferentscales.Andthedeformableconvolutionisintroducedtoimprovethemodel'sadaptabilitytodetecttargetsofdifferentshapes.Wevalidatetheeffectivenessofouralgorithmswithextensiveexperimentsonahelmetdetectiondataset(SafetyHelmetWearingDataset,SHWD).Weuse6000imagesinSHWDasthetrainingsetand2000imagesasthetestingset.AcomputerwithIntel-Xeon(R)4214CPU(2.2GHz),64GBmemory,andfourNVIDIAGeForceGTX2080TiGPUsareusedastheexperimentalplatform.Theexperimentalresultsindicatethattherecognitionaccuracyoftheproposedalgorithmisover90%.Theproposeddeformablebi-directionaggregationnetworkemploysdeepsemanticfeaturesandshallowdetailfeatures,andadaptivelyadjuststhereceptivefield,whichcanadapttoobjectsofdifferentshapesandscales,thusimprovingthedetectionaccuracy.Besides,thep...