能力升级练(三)不等式一、选择题1.不等式|x|(1-2x)>0的解集为()A.(-∞,0)∪(0,12)B.(-∞,12)C.(12,+∞)D.(0,12)解析当x≥0时,原不等式即为x(1-2x)>0,所以00,所以x<0,综上,原不等式的解集为(-∞,0)∪(0,12).答案A2.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是()A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定解析由f(1-x)=f(1+x)知f(x)图象的对称轴为直线x=1,则有a2=1,故a=2.由f(x)的图象可知f(x)在[-1,1]上为增函数.所以x∈[-1,1]时,f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,令b2-b-2>0,解得b<-1或b>2.1答案C3.若a,b∈R,且a+|b|<0,则下列不等式中正确的是()A.a-b>0B.a3+b3>0C.a2-b2<0D.a+b<0解析由a+|b|...