基于单元模型的神经网络预测控制在过热蒸汽温度控制中的应用电气工程学院:何一文火电厂锅炉的过热蒸汽温度是其运行质量的重要指标之一,过热蒸汽温度过高或过低都会影响电厂的安全经济运行,但汽温调节对象是一个多容环节,它的纯延迟时间和时间常数都比较大,干扰因素多,对象模型不确定,在锅炉自动调节系统中属于可控性最差的一个调节系统。一.引言一.引言目前该系统控制的主导设计方案是PID律,虽然一些先进控制技术近年来尝试在火电厂自动化中应用,但由于理论上的局限性和实现上的具体困难,均未能得到广泛应用。一.引言本文根据单元控制的思想,并运用神经网络预测控制的方法,应用于过热蒸汽温度控制中。使单元控制的思想得以实现,神经网络更接近生物神经网络的结构,神经网络的优势得以更好发挥。设计出了具有较高可靠性和较强鲁棒性的控制系统。二.单元控制的基本思想传统的预测控制系统以整体系统模型为基础,所设计的预测算法是集中式的,随着系统规模的扩大,计算量迅速增加,因此影响到其实时性。另外,很难用一个同质的,单一的集中模型来描述复杂系统,这就需要新的分析方法。二.单元控制的基本思想单元控制是用单元模型系统描述对象的动态过程,为受控对象建立一种结构分散化模型,它吸收了人工分析系统的经验知识,由定性的结构模型和定量的模型给出单元模型。既含有整体系统的因果结构,又包含单元间的相互关联。此具有网状结构的模型,按照一定意义下的主要因果关系,被抽象出一种链状结构,我们称之为单元模型系统。这种模型比一般多输入多输出系统含有更多的信息量,可以用来设计具有高可靠性和强鲁棒性要求的控制系统。基于单元的模型是一种多输入单输出系统,通过关联与其他相关单元相关联。通过自身动态变化和单元间相互影响过程,共同描述对象的整体运动特性。针对每个单元设计单元预测系统和控制系统,它通过接受本单元相关信息和直接关联的单元的测量和预测信息,预测该单元的运动趋势,并分析判断,作出该单元的控制决策。各单元预测系统按照研究对象的关联模式相互关联,并经由关联传递单元预测信息,共同完成对整体系统未来一定时间动态特性的预测,而各单元控制系统也经由关联传递控制信息,从而完成对整体系统的控制。单元预测系统的设计和计算是独立的和并行的,单元系统可以是不同性质和不同模式的,能够适用于大型复杂系统地分析预测。二.单元控制的基本思想±ß½çjNi,jNi,ZjZjjNi,ZicZ...