作者:卡尔‧戴瑟罗斯(KarlDeisseroth)卡尔‧戴瑟梦斯是斯坦福大学生物工程学和精神病学教授,因为开创了Clarity和光遗传学技术而获得了2015年生物医学科学Lurie奖。我们的神经系统就像一块色彩丰富的织锦,由交互连接的线编织而成。轴突,一种从神经元延伸出的细纤维,就是构成大脑的「线」。借助这种特殊结构,电信号可以从一个神经元传至另一个神经元。长程投射轴突(Long-rangeprojectingaxon)类似于纺织品中的「经线」,可与大脑自身的「纬线」(即短距离内往复缠绕的轴突)交织在一起,通过传递信号来执行计算功能。要理解大脑的工作机制,科学家需要破译这幅神经织锦的微观结构(精确到单个轴突)。不过,要搞清楚单个轴突的功能,我们还得从整个大脑入手,因为这样才能完整地呈现个细长轴突的全貌以及它所处的环境。然而,遍布脑部的脂肪分子(脂质),尤其是细胞膜上的脂质分子,会导致成像设备发出的光产生散射,阻碍了我们透过最表层的细胞来观察脑部的深层结构。由于大脑既不像普通织物那样平整,也不透明,要看清脑内轴突的精细结构,我们需要一种全新的工具。现在,一项新技术为神经科学家开启了察看全脑的大门,借助这项新技术,科学家可以确定大脑中构建复杂神经通路的神经纤维的轨迹,以及它们的分子特性。新方法以一种名为水凝胶(hydrogel)的物质为基础。水凝胶是一种聚合物,它内部形成了三维连接网络,既可保持水份,又可防止自身解体。它常被用来在生物组织内部构建3D聚会物骨架。整个过程分为3部,首先是让凝胶在实验动物或死者的脑内形成,这种凝胶可与蛋白质和核酸(脱氧核糖核酸和核糖核酸)等连接,从而保护这些富含生物信息的关键分子;然后,去除脑中不必和会散射光的组分(比如脂质);最后,向整个脑结构中引入大量荧光标记和其他标签(凝胶不仅要透明,还要容易注入探针标记),标记发光后,科学家就能以极高的分辨率,直接观察整个脑部中不同的神经纤维和分子。新技术可以让科学家更深入地了解人体的指挥中心,也让他们得到了很多新发现。借助这种方法,神经科学家能将神经通路与相应的行为学功能联系起来,包括运动、认知等躯体行为和认知行为。新方法还可以帮助科学家更好地研究帕金森病、阿尔茨海默病、多发性硬化症、自闭症、药物滥用、恐惧症与焦虑症的发病过程。我们甚至协助创办了一家公司,以探索组织一水凝胶(tissue-hydrogel)工程在癌症诊断方面的应用。目前该方法除了应用于脑部,还应用到了脑...