第一章行列式习题1.11.证明:(1)首先证明是数域。因为,所以中至少含有两个复数。任给两个复数,我们有。因为是数域,所以有理数的和、差、积仍然为有理数,所以。如果,则必有不同时为零,从而。又因为有理数的和、差、积、商仍为有理数,所以。综上所述,我们有是数域。(2)类似可证明是数域,这儿是一个素数。(3)下面证明:若为互异素数,则。(反证法)如果,则,从而有。由于上式左端是有理数,而是无理数,所以必有。所以有或。如果,则,这与是互异素数矛盾。如果,则有,从而有“有理数=无理数”成立,此为矛盾。所以假设不成立,从而有。同样可得。(4)因为有无数个互异的素数,所以由(3)可知在和之间存在无穷多个不同的数域。2.解:(1)是数域,证明略(与上面类似)。(2)就是所有的实部和虚部都为有理数的复数所组成的集合。而复数域。(3)不是数域,这是因为他关于除法不封闭。例如。3.证明:(1)因为都是数域,所以,从而。故含有两个以上的复数。任给三个数,则有且。因为是数域,所以有且。所以。所以是数域。(2)一般不是数域。例如,我们有,但是。习题1.22.解:项的符号为习题1.31.证明:根据行列式的定义==0。所以上式中(-1)的个数和(+1)的个数一样多,(-1)是由奇排列产生的,而(+1)是由偶排列产生的。同时根据行列式的定义这里包括了所有的阶排列,故可以得到全体阶排列中奇排列的个数与偶排列的个数一样多,各占一半。2.解(1)=;(2);(3);(4)=。(5)。3.解:(1)。(2)左端==右端。(3)。(4)原式(先依次)=。。。=。(5)原式(先依次)=。。。=。4.解:设展开后的正项个数为。则由行列式的定义有。又因为(利用)(下三角行列式)。所以有。5.证明:(1)左端=右端。(2)利用性质5展开。6.解:(3)与上面3(3)类似可得。7.解:利用行列式的初等变换及性质5。8.解:。9.证明:设原行列式=D。则对D进行依次如下变换后所得的行列式D′第一列由题设中所给的5个数字构成。从而由行列式的定义可知D′可被23整除。又由行列式的性质知D′。因为23是素数,且不可能被23整除,所以D可以被23整除。习题1.41.解:(1)=;(2)=;(3)方法一+=;方法二逐次均按第2行展开可得同样结果,具体解法可参见下例。(4)逐次按第2行展开===;(5)==;(6)==;(7)换行后可得到范德蒙行列式;(8)先把第一行加到第三行,再提取第三行的公因式,换行后可得到范德蒙行列式。2.解:(1)+=;(2)=1+;(此处有笔误)(...