23考研数学冲刺课程-高数2023考研数学冲刺讲义高等数学部分第一部分极限与连续(一)不定型极限:1、)1ln()(sinlim20xxxxxxx。2、求30)sin(sin)tan(tanlimxxxx。3、设)(xf二阶可导,2)0(,0)0(ff,求40)()(sinlimxxfxfx。4、求xxxxxln2112ln1lim1。5、设cdtexbxaxxtx]1[lim054202,求cba,,。【解】方法一:由)(214422tottet得)(10355302xoxxxdtext,于是55420542)(101)(1)31(12xxobxbaxbdtexbxaxxt,故10,0,031bcbab解得103,3,3cba。方法二:50300542022lim]1[limxdtebaxxdtexbxaxxtxxtx42053lim2xbeaxxx,由泰勒公式得)(214422xoxxex,从而)(2)3()(344222xoxbxbbabeaxx,23考研数学冲刺课程-高数于是cbbba2,03,0解得23,3,3cba。6、设cxebxaxxx]1)[(lim412,求cba,,。(提示:用泰勒公式计算)【解】由)1(2111221xoxxex,)]1(211[111222424xoxxxxx得)]1(211[)]1(2111)[(1)(222222412xoxxxoxxbxaxxebxaxx(二)无穷小的层次1、设bxaxdtttt~sin20(0x),求ba,。【解】方法一:nxnxnxxxxnnxxxxxx220122200sinlim22sinlimlim,显然6n,且1811coslim91sinlim31sinlim31lim2030622060tttttxxxxttxx,故6,181ba。2、设dtttdttxext10tan03sin,)1(,当0x时是的())(A高阶无穷小)(B同阶但非等价无穷小)(C等价无穷小)(D低阶无穷小。【解】由32tan30tan0300sec)tan1(lim)1(limlimexxxdttxxxxtxx得xe3~;由11)1sin(limsinlimlim01000xxxxexxeeexdtttxx得x~,从而是的同阶而非等价的无穷小,应选)(B。23考研数学冲刺课程-高数3、设0t,则当0t时,222)]cos(1[)(22tyxdxdyyxtf是t的n阶无穷小量,则n为())(A2;)(B4;)(C6;)(D8。【解】ttyxdrrrdxdyyxtf0222)cos1(2)]cos(1[)(222,由66)cos1(2lim)(lim52060tttttftt得66~)(ttf,应选)(C。(三)定积分定义求极限:1、nnnnnn1222222)]1()21)(11[(lim。2、求ninnini142sinlim。3、)1cos1212...