Team#6019page1of32TwoDiscreteModelsabouttheSweetSpotContentsSummary..……………………………………………………………………………..1Contents………………………………………………………………………………..21.Introduction…………………………………………………………………………41.1Definitionabout“SweetSpot”…………………………………………...........51.2RestatementoftheProblem…………………………………………………...51.3SurveyofPreviousResearch………………………………………….……….61.3.1RodCross:FreeBatVibrationModel…………………………….……..61.3.2A.M.Nathan&L.V.Smith:Two-springModel…………………….…62.Convention………………………………………………………………………….62.1Terminology……………………………………………………………….…..62.2Variables…………………………………………………………………….…72.3Assumption………………………………………………………………….…83.COPModelasSweetSpot……………………………………………………….....83.1WhyisCOP……………………………………………………………………83.2ToFindtheCOP………………………………………………………………83.2.1AssumptionsabouttheCOPmodel……………………………………..83.2.2TheCOPModel…………………………………………………………83.3ModificationoftheCOPModel………………………………………….…..113.3.1TheSpinoftheBall……………………………………………………113.3.2TheAnglebetweenBallSpeedandtheBat……………………………123.3.3MotionofInertiaModification………………….…….……………….123.4DisadvantagesoftheCOP……………………………………………………133.4.1COPisChanging……………………………………………………….133.4.2COPisnotthelocationwheremaximizetheballspeed………………14Team#6019page2of324.TheNOVModel………………..…………………………………………………14.4.1TheadvantageoftheNOVModel……………………………………………144.1.1MoreconditionintheNOVModel……………………………………..144.1.2WhyisNOV…………………………………………………………….154.2TheNOVModel………………………………………………………………154.2....