1.6三角函数模型的简单应用一、学习目标、细解考纲1.用三角函数模型y=Asin(ωx+φ)+B解决一些具有周期变化规律的实际问题.(重点)2.将某些实际问题抽象为三角函数模型.(难点)3.通过把实际问题抽象出三角函数模型,提升数学抽象、数学运算和数学建模的核心素养.二、自主学习—————(素养催化剂)(阅读教材第60—64页内容,完成以下问题:)1.怎样用三角函数构建刻画事物周期变化的数学模型2.解三角应用题有怎样的基本步骤三、探究应用,“三会培养”-------(素养生长剂)例1(教材P60例2改编)(1)函数y=x+sin|x|,x∈[-π,π]的大致图象是()ABCD(2)作出函数y=|cosx|的图象,判断其奇偶性、周期性并写出单调区间.变式1.函数y=lncosx,x∈(−π2,π2)的大致图象是()例2、(教材P60例1改编)已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sin(2t+π3),t∈[0,+∞).(1)用“五点法”作出这个函数的简图;(2)小球在开始振动(t=0)时的位移是多少?(3)小球上升到最高点和下降到最低点时的位移分别是多少?(4)经过多长时间小球往复振动一次?变式2(教材改编)单摆从某点开始来回摆动,离开平衡位置的距离s(单位:cm)和时间t(单位:s)的函数关系式为s=6sin(2πt+π6).(1)当单摆开始摆动(t=0)时,离开平衡位置的距离是多少?(2)当单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需多长时间?四、拓展延伸、智慧发展--------(素养强壮剂)在处理曲线拟合和预测的问题时,通常需要几个步骤?例3(教材P62例4改编)已知某海滨浴场的海浪高度y(m)是时间t(h)的函数,其中0≤t≤24,记y=f(t),下表是某日各时的浪高数据:t03691215182124y1.51.00.51.01.510.50.991.5经长期观测,y=f(t)的图象可近似地看成是函数y=Acosωt+b的图象.(1)根据以上数据,求其最小正周期,振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?变式3某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下面是某日水深的数据.t/小时03691215182124y/米10.013.09.97.010.013.09.97.010.0经长期观察,y=f(t)的曲线可近似地看成是函数y=Asinωt+b的图象.(1)试根据以上数据,求出函数y=f(t)的近似解析式.(2)一般情况下,船舶航行时,船底高出海底的距离为5米或5米以上时认...