第3章函数的概念与性质3.4函数的应用(一)人教A版2019高中数学必修第一册在现实问题中,能利用函数构建模型,解决问题.最新课程标准名称解析式条件一次函数模型y=kx+bk≠0反比例函数模型y=kx+bk≠0二次函数模型一般式:y=ax2+bx+c顶点式:y=ax+b2a2+4ac-b24aa≠0幂函数模型y=axn+ba≠0,n≠1几类常见函数模型建立函数模型解决实际问题的基本思路题型一一次、二次函数模型[经典例题]例1某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大值.【解析】设每个提价x元(x≥0,x∈N),利润为y元.每天销售总额为(10+x)(100-10x)元,进货总额=8(100-10x)元,显然100-10x>0,即x<10,则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.答:当售价定为14元时,可使每天所赚的利润最大,最大利润为360元.可根据实际问题建立二次函数模型解析式.跟踪训练1某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km,之后以120km/h的速度匀速行驶.试写出火车行驶的总路程s与匀速行驶的时间t之间的函数关系式,并求离开北京2h时火车行驶的路程.解析:因为火车匀速行驶的总时间为(277-13)÷120=115(h),所以0≤t≤115.因为火车匀速行驶th所行驶的路程为120tkm,所以火车行驶的总路程s与匀速行驶的时间t之间的函数关系式为s=13+120t0≤t≤115.离开北京2h时火车匀速行驶的时间为2-16=116(h),此时火车行驶的路程s=13+120×116=233(km).求出火车匀速行驶的总时间,可得定义域,再建立总路程关于时间的函数模型.题型二分段函数[教材P94例2]例2一辆汽车在某段路程中行驶的平均速率v(单位:km/h)与时间t(单位:h)的关系如图所示,(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s(单位:km)与时间t的函数解析式,并画出相应的图象.【解析】(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5h内行驶的路程为360km.(2)根据题图,有s=50t+200...