第八章章末知识梳理与能力提升[本章知识结构——建体系][核心知识点]一、空间几何体的结构特征1.多面体及其结构特征(1)棱柱:①有两个平面(底面)互相平行;②其余各面都是平行四边形;③每相邻两个平行四边形的公共边互相平行.(2)棱锥:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.(3)棱台:①上、下底面互相平行,且是相似图形;②各侧棱延长线相交于一点.2.旋转体及其结构特征(1)圆柱:①圆柱的轴垂直于底面;②圆柱的轴截面是矩形;③圆柱的所有母线相互平行且相等,且都与圆柱的轴平行;④圆柱的母线垂直于底面.(2)圆锥:①圆锥的轴垂直于底面;②圆锥的轴截面为等腰三角形;③圆锥的顶点与底面圆周上任一点的连线都是圆锥的母线,圆锥的母线有无数条;④圆锥的底面是一个圆面.(3)圆台:①圆台的上、下底面是两个半径不等的圆面;②圆台两底面圆所在平面互相平行且和轴垂直;③圆台有无数条母线;④圆台的母线延长线交于一点.二、空间几何体的直观图1.斜二测画法中“斜”和“二测”。“斜”是指在已知图形的xOy平面内与x轴垂直的线段,在直观图中均与x′轴成45°或135°;“二测”是指两种度量形式,即在直观图中,平行于x′轴或z′轴的线段长度不变;平行于y′轴的线段长度变为原来的一半.2.斜二测画法中的建系原则在已知图中建立直角坐标系,理论上在任何位置建立坐标系都行,但实际作图时,一般建立特殊的直角坐标系,尽量运用原有直线或图形的对称直线为坐标轴,图形的对称点为原点或利用原有互相垂直的直线为坐标轴等.三、空间几何体的表面积和体积1.多面体的表面积各个面的面积之和,也就是展开图的面积.2.旋转体的表面积圆柱:S=2πr2+2πrl=2πr(r+l).圆锥:S=πr2+πrl=πr(r+l).圆台:S=π(r′2+r2+r′l+rl).球:S=4πR2.3.柱体、锥体、台体的体积公式(1)柱体的体积公式:V柱体=Sh(S底面面积,h为高).(2)锥体的体积公式V锥体=13Sh(S底面面积,h为高).(3)台体的体积公式V台体=13(S+SS′+S′)h(S′,S分别为上、下底面面积,h为高).(4)球的体积公式:V=43πR3.四、空间点、线、面之间的位置关系1.平面的基本性质四个基本事实及其作用基本事实1:过不在一条直线上的三个点,有且只有一个平面.作用:①可用来确定一个平面;②证明点线共面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在此平面内.作用:可用来证明点、直线在平面内.基本事实3...