1原创精品资源学科网独家享有版权,侵权必究!考点35直线与圆的位置关系直线与圆的位置关系是高考考查的重点,有时会在选择或填空题中单独命制,也可能出现在解答题中,必须熟练掌握.(1)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(2)能用直线和圆的方程解决一些简单的问题.(3)初步了解用代数方法处理几何问题的思想.一、直线与圆的三种位置关系(1)直线与圆相离,没有公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相交,有两个公共点.二、直线与圆的位置关系的判断方法判断方法直线与圆的位置关系几何法:由圆心到直线的距离d与半径长r的大小关系来判断直线与圆相离直线与圆相切直线与圆相交代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根方程无实数解,直线与圆相离方程有唯一的实数解,直线与圆相切2原创精品资源学科网独家享有版权,侵权必究!据一元二次方程的解的个数来判断方程有两个不同的实数解,直线与圆相交三、圆与圆的位置关系两圆的位置关系外切相切两圆有唯一公共点内切内含相离两圆没有公共点外离相交两圆有两个不同的公共点四、圆与圆位置关系的判断圆与圆的位置关系的判断方法有两种:(1)几何法:由两圆的圆心距d与半径长R,r的关系来判断(如下图,其中).(2)代数法:设圆C1:x2+y2+D1x+E1y+F1=0①,圆C2:x2+y2+D2x+E2y+F2=0②,联立①②,如果该方程组没有实数解,那么两圆相离;如果该方程组有两组相同的实数解,那么两圆相切;如果该方程组有两组不同的实数解,那么两圆相交.五、两圆相交时公共弦所在直线的方程设圆C1:x2+y2+D1x+E1y+F1=0①,圆C2:x2+y2+D2x+E2y+F2=0②,若两圆相交,则有一条公共弦,由①-②,得(D1-D2)x+(E1-E2)y+F1-F2=0③.方程③表示圆C1与圆C2的公共弦所在直线的方程.3原创精品资源学科网独家享有版权,侵权必究!考向一直线与圆的位置关系判断直线与圆的位置关系时,通常用几何法,其步骤是:(1)明确圆心C的坐标(a,b)和半径长r,将直线方程化为一般式;(2)利用点到直线的距离公式求出圆心到直线的距离d;(3)比较d与r的大小,写出结论.典例1若直线:与圆:相切,则直线与圆:的位置关系是A.相交B.相切C.相离D.不确定【答案】A【解析】因为直线:与圆:相切,所以,解得,因为,所以,所以直线的方程为,圆D的圆心到直线的距离,所以直线与圆相交.故选A.【名师点睛】本题考查...