第1页(共17页)学科网(北京)股份有限公司第16讲定点问题一.问题综述定点问题是常见的出题形式,解决这类问题的关键是引入变量表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。1、解决直线过定点问题的基本步骤:(1)设出直线,(2)借助韦达定理和已知条件找出与的一次函数关系式,(3)代入直线方程,得出定点。2、处理定点问题的技巧:(1)引进参数法,设定点坐标,根据题意选择参数,建立一个直线系或者曲线系方程,而该方程与参数无关,得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点,即所求的定点。(2)特殊到一般法。从特殊位置入手,找到定点,再证明该定点与变量无关。3、其中共线问题是解析几何中常见问题之一,解决此类问题常利用向量共线定理,可以从两方面入手(1)共线向量坐标交叉相乘相等(2)直线上任意两点的向量存在倍数关系下面总结圆锥曲线中几种常见的定点模型.二.典例分析类型1:“手电筒”模型手电筒模型:限定AP与BP条件(如定值,定值,则直线AB过定点(因三条直线形似手电筒,故名曰“手电筒模型”)【例1-1】已知椭圆:函若直线:与椭圆相交于求两点(不是左右顶点),且以为直径的圆过椭圆的右顶点。求证:直线过定点,并求出该定点坐标.【解析】设,由得以为直径的圆过椭圆的右顶点解得且满足,当时,:,直线过定点与已知矛盾.当时,:,直线过定点.第2页(共17页)学科网(北京)股份有限公司综上可知:直线过定点【方法小结】本题为”弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB,则AB必过定点(参考百度文库文章”圆锥曲线的弦对定点张直角的一组性质”)【例1-2】(2017全国Ⅰ理20)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点【解析】(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此,解得.故C的方程为.(2)设直线与直线的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可设l:().将代入得第3页(共17页)学科网(北京)股份有限公司由题设可知.设,则,.而.由题设,故.即.解得.当且仅当时,,欲使l:,...