8.5.3第二课时平面与平面平行的性质[思考发现]1.已知长方体ABCDA′B′C′D′,平面α∩平面ABCD=EF,平面α∩平面A′B′C′D′=E′F′,则EF与E′F′的位置关系是()A.平行B.相交C.异面D.不确定解析:因为平面ABCD∥平面A′B′C′D′,所以EF∥E′F′.故选A.答案:A第二课时平面与平面平行的性质2.已知平面α∥平面β,直线l∥α,则()A.l∥βB.l⊂βC.l∥β或l⊂βD.l,β相交解析:假设l与β相交,又α∥β,则l与α相交,与l∥α矛盾,则假设不成立,则l∥β或l⊂β.故选C.答案:C3.六棱柱的两底面为α,β,且A∈α,B∈α,C∈β,D∈β,AD∥BC,则AB与CD的位置关系是______.解析:因为AD∥BC,且平面ABCD∩α=AB,平面ABCD∩β=CD,又α∥β,所以AB∥CD.答案:平行4.已知平面α∥β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.解析:由面面平行的性质可知,过a与β相交的平面与β的交线才与a平行,故①错误;②正确;平面β内的直线与直线a平行,异面均可,其中包括异面垂直,故③错误.答案:②[系统归纳]1.解读平面与平面平行的性质定理(1)两个平面平行的性质定理揭示了“两个平面平行之后它们具有什么样的性质”.该性质定理可以看作直线与直线平行的判定定理.可简述为“若面面平行,则线线平行”.(2)用该定理判断直线a与b平行时,必须具备三个条件:①平面α和平面β平行,即α∥β;②平面γ和α相交,即α∩γ=a;③平面γ和β相交,即β∩γ=b.以上三个条件缺一不可.(3)在应用这个定理时,要防止出现“两个平面平行,则一个平面内的直线平行于另一个平面一切直线”的错误.2.两个平面平行的一些常见结论(1)如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行.(2)如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交.(3)夹在两个平行平面间的所有平行线段相等.知识点一面面平行性质的应用[例1]如图,已知平面α∥β,P∉α且P∉β,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D,且PA=6,AC=9,PD=8,求BD的长.[解]因为AC∩BD=P,所以经过直线AC与BD可确定...