必修第二册第七章《复数》7.2复数的四则运算必修第二册第七章《复数》7.2.1复数的加减运算及几何意义1.复数的加法和减法的运算法则P75-77复数加法与减法的运算法则:实部和虚部分别相加/减(1)设z1=a+bi,z2=c+di是任意两个复数,则z1+z2=,z1-z2=___.(a+c)+(b+d)i(a-c)+(b-d)i(2)对任意z1,z2,z3C∈,有加法交换律:z1+z2=______,加法结合律:(zz2)+z3=__.z2+z1z1+(z2+z3).______||,33]1[ziizz则满足设复数练习.132)3(||,23,3222ziziz.___2_____,,21,32]2[122121zzzziziz则若复数练习izz321izz7212107132.复数的加/减法的几何意义.___________,21OZOZ则,__________21OZOZ则.__________________它对应的复数是,__________21OZOZ.________________它对应的复数是.2121OZOZzz对应的向量为复数之和加法的平行四边形减法的三角形法则,,,,,11对应与且复数设OZbiazRdcbaOZ1(a,b)Z2(c,d)Z(a+c,b+d)(a,b)(c,d)(a+c,b+d)(a-c,b-d).22对应与复数OZdicz(a+c)+(b+d)i(a-c)+(b-d)i=z1+z2=z1-z2.122121ZZOZOZzz对应的向量为复数之差122121ZZOZOZzz复数差的模=对应向量差的模=两点距离)2()3(;)2(;1)1(.,.277izizzzOZP对应的向量试作出下列运算的结果对应的复数是向量.1),0,1()1(111OAOZOZzOZ对应的向量是则记xyZA1Z1.),1,0()2(222ZZOZOZizOZ对应的向量是则记xyZZ2.)2(),1,2()3(233OAOZOZizOZ对应的向量是则记xyZZ3A2复数加减法→对应向量加减法.,2||]6[在复平面内的轨迹对应的点求复数满足复数例Zzizz|||1|1OZOZz2||1ZZ.2)1,0(1的距离为与即ZZ.2,)1,0(为半径的圆以为圆心的轨迹是以点Z).1,0(:1Zi对应的点设析.,31||]1[在复平面内的轨迹对应的点求复数满足复数变Zziizz.2||:iz即析(同上).____|23|,1||]2[的最小值为则满足复数变izzz.,1||||,:在单位圆上对应的点为析ZOZzZz.|)23(||23|),2,3(23AZOAOZizizAi对应的点为记113._______,21,1,,,]3[对应的复数是则向量对应的复数分别是若向量交于点与对角线中平行四边形练习CDiiOBOAOBDACABCDODCABOBOABACD其对应的复数z=2-3i)2,1()1,1()3,2(.____|2|,4|2||2|]3[的最小值为则满足复数变izizizz),1,2(),2,0(),2,0(,2,2,2,:321...