数学6.4.3余弦定理、正弦定理(第3课时)同步精品课件学习目标XUEXIMUBIAO学习目标核心素养1.能将实际问题转化为解三角形问题.(难点)2.能够用正、余弦定理求解与距离、高度、角度有关的实际应用问题.(重点)1.通过利用正、余弦定理解决实际问题,培养数学建模的核心素养.2.通过求解距离、高度等实际问题,提升数学运算的素养.问题导入WENTIDAORU在我国古代就有嫦娥奔月的神话故事.明月高悬,我们仰望夜空,会有无限遐想.问题:月亮离我们地球有多远呢?科学家们是怎样测出来的呢?知识梳理ZHISHISHULI知识点一距离问题类型图形方法两点间不可到达的距离余弦定理两点间可视不可到达的距离正弦定理两个不可到达的点之间的距离先用正弦定理,再用余弦定理知识点二高度问题类型简图计算方法底部可达测得BC=a,∠BCA=C,AB=a·tanC.底部不可达点B与C,D共线测得CD=a及C与∠ADB的度数.先由正弦定理求出AC或AD,再解三角形得AB的值.点B与C,D不共线测得CD=a及∠BCD,∠BDC,∠ACB的度数.在△BCD中由正弦定理求得BC,再解三角形得AB的值.知识点三角度问题测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形得到所求的量,从而得到实际问题的解.题型探究TIXINGTANJIU一、距离问题【例1】海上有A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A.103海里B.1063海里C.52海里D.56海里D[根据题意,可得如图.在△ABC中,A=60°,B=75°,AB=10,∴C=45°.由正弦定理可得ABsinC=BCsinA,即1022=BC32,∴BC=56(海里).]反思感悟三角形中与距离有关问题的求解策略1解决与距离有关的问题,若所求的线段在一个三角形中,则直接利用正、余弦定理求解即可;若所求的线段在多个三角形中,要根据条件选择适当的三角形,再利用正、余弦定理求解.(2)解决与距离有关的问题的关键是转化为求三角形中的边,分析所解三角形中已知哪些元素,还需要求出哪些元素,灵活应用正、余弦定理来解决.跟踪训练1A,B两地之间隔着一个山岗,如图,现选择另一点C,测得CA=7km,CB=5km,C=60°,则A,B两点之间的距离为km.=72+52-2×7×5×12=39.解析由余弦定理,...