第三章简单的优化模型3.1存贮模型3.2生猪的出售时机3.4最优价格3.6消费者均衡3.7冰山运输•现实世界中普遍存在着优化问题•静态优化问题指最优解是数(不是函数)•建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数•求解静态优化模型一般用微分法静态优化模型3.1存贮模型问题配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。该厂生产能力非常大,即所需数量可在很短时间内产出。已知某产品日需求量100件,生产准备费5000元,贮存费每日每件1元。试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。要求不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。问题分析与思考•每天生产一次,每次100件,无贮存费,准备费5000元。日需求100件,准备费5000元,贮存费每日每件1元。•10天生产一次,每次1000件,贮存费900+800+…+100=4500元,准备费5000元,总计9500元。•50天生产一次,每次5000件,贮存费4900+4800+…+100=122500元,准备费5000元,总计127500元。平均每天费用950元平均每天费用2550元10天生产一次平均每天费用最小吗?每天费用5000元•这是一个优化问题,关键在建立目标函数。显然不能用一个周期的总费用作为目标函数目标函数——每天总费用的平均值•周期短,产量小•周期长,产量大问题分析与思考贮存费少,准备费多准备费少,贮存费多存在最佳的周期和产量,使总费用(二者之和)最小模型假设1.产品每天的需求量为常数r;2.每次生产准备费为c1,每天每件产品贮存费为c2;3.T天生产一次(周期),每次生产Q件,当贮存量为零时,Q件产品立即到来(生产时间不计);建模目的设r,c1,c2已知,求T,Q使每天总费用的平均值最小。4.为方便起见,时间和产量都作为连续量处理。模型建立0tq贮存量表示为时间的函数q(t)TQrt=0生产Q件,q(0)=Q,q(t)以需求速率r递减,q(T)=0.一周期总费用TQccC2~21每天总费用平均值(目标函数)2~)(21rTcTcTCTC离散问题连续化AcdttqcT202)(一周期贮存费为A=QT/22221rTccrTQ模型求解Min2)(21rTcTcTC求T使0dTdC212crcrTQ212rccT模型分析QTc,1QTc,2QTr,模型应用c1=5000,c2=1,r=100T=10(天),Q=1000(件),C=1000(元)•回答问题•经济批量订货公式(EOQ公式)212rccT212crcrTQ每天需求量r,每次订货费c1,每天每件贮存费c2,用于订货、...