题型探究课堂解透题型探究课堂解透最新课程标准1.经历从实际情境中抽象出一元二次不等式模型的过程;2.能将实际问题转化为数学问题,建立不等式模型.学科核心素养能解决一元二次不等式的实际问题.(逻辑推理、数学建模)题型1一元二次不等式的应用例1汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m,又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?方法归纳解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系.(2)设:引进数学符号,用不等式表示不等关系.(3)求:解不等式.(4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.题型2一元二次不等式与基本不等式的综合应用例3某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a-0.8x%)万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.4x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?方法归纳解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.(1)解释C(0)的实际意义,并写出F关于x的函数关系;(2)该合作社应修建多大容积的沼气发电池,可使F最小,并求出最小值.(3)要使F不超过140万元,求x的取值范围.课堂十分钟1.若产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是()A.100台B.120台C.150台D.180台答案:C解析:y-25x=-0.1x2-5x+3000≤0,即x2+50x-30000≥0,解得x≥150或x≤-200(舍去).故选C.2.以每秒am的速度从地面垂直向上发射子弹,t...