第九章习题课•主要内容•典型例题常数项级数常数项级数函数项级数函数项级数一般项级数一般项级数正项级数正项级数幂级数幂级数三角级数三角级数收敛半径R收敛半径R泰勒展开式泰勒展开式数或函数数或函数函数函数数数任意项级数任意项级数傅氏展开式傅氏展开式傅氏级数傅氏级数泰勒级数泰勒级数0)(xR为常数nu)(xuunn为函数满足狄氏条件0xx取在收敛级数与数条件下相互转化1nnu1nnu一、主要内容nnnuuuuu32111、常数项级数常数项级数收敛(发散)nnslim存在(不存在).niinnuuuus121级数的部分和定义级数的收敛与发散性质1:级数的每一项同乘一个不为零的常数,敛散性不变.性质2:两收敛级数可以逐项相加与逐项相减.性质3:在级数前面加上(减去或改变)有限项不影响级数的敛散性.性质4:收敛级数加括弧后所成的级数仍然收敛于原来的和..0limnnu级数收敛的必要条件:收敛级数的基本性质常数项级数审敛法正项级数任意项级数1.2.4.充要条件5.比较法6.比值法7.根值法4.绝对收敛5.交错级数(莱布尼茨定理)3.按基本性质;;,则级数收敛若SSn;,0,则级数发散当nun一般项级数4.绝对收敛定义0,1nnnuu.有界部分和所成的数列正项级数收敛ns2、正项级数及其审敛法审敛法(1)比较审敛法若1nnu收敛(发散)且)(nnnnvuuv,则1nnv收敛(发散).(2)比较审敛法的极限形式设1nnu与1nnv都是正项级数,如果lvunnnlim,则(1)当l0时,二级数有相同的敛散性;(2)当0l时,若1nnv收敛,则1nnu收敛;(3)当l时,若1nnv发散,则1nnu发散;设1nnu为正项级数,如果0limlnunn(或nnnulim),则级数1nnu发散;如果有1p,使得npnunlim存在,则级数1nnu收敛.(3)极限审敛法(4)比值审敛法(达朗贝尔D’Alembert判别法)设1nnu是正项级数,如果)(lim1数或nnnuu则1时级数收敛;1时级数发散;1时失效.(5)根值审敛法(柯西判别法)设1nnu是正项级数,如果nnnulim)(为数或,则1时级数收敛;1时级数发散;1时失效.定义正、负项相间的级数称为交错级数.nnnnnnuu111)1()1(或莱布尼茨定理如果交错级数满足条件:(ⅰ)),3,2,1(1nuunn;(ⅱ)0limnnu,则级数收敛,且其和1us,其余项nr的绝对值1nnur.)0(nu其中3、交错级数及其审敛法...