第五章聚类分析第一节引言第二节相似性的量度第三节系统聚类分析法第四节K均值聚类分析第五节有序样品的聚类分析法第六节实例分析与计算机实现第一节引言“物以类聚,人以群分”。对事物进行分类,是人们认识事物的出发点,也是人们认识世界的一种重要方法。因此,分类学已成为人们认识世界的一门基础科学。在生物、经济、社会、人口等领域的研究中,存在着大量量化分类研究。例如:在生物学中,为了研究生物的演变,生物学家需要根据各种生物不同的特征对生物进行分类。在经济研究中,为了研究不同地区城镇居民生活中的收入和消费情况,往往需要划分不同的类型去研究。在地质学中,为了研究矿物勘探,需要根据各种矿石的化学和物理性质和所含化学成分把它们归于不同的矿石类。在人口学研究中,需要构造人口生育分类模式、人口死亡分类状况,以此来研究人口的生育和死亡规律。但历史上这些分类方法多半是人们主要依靠经验作定性分类,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别与联系;特别是对于多因素、多指标的分类问题,定性分类的准确性不好把握。为了克服定性分类存在的不足,人们把数学方法引入分类中,形成了数值分类学。后来随着多元统计分析的发展,从数值分类学中逐渐分离出了聚类分析方法。随着计算机技术的不断发展,利用数学方法研究分类不仅非常必要而且完全可能,因此近年来,聚类分析的理论和应用得到了迅速的发展。聚类分析就是分析如何对样品(或变量)进行量化分类的问题。通常聚类分析分为Q型聚类和R型聚类。Q型聚类是对样品进行分类处理,R型聚类是对变量进行分类处理。第二节相似性的量度一样品相似性的度量二变量相似性的度量一、样品相似性的度量在聚类之前,要首先分析样品间的相似性。Q型聚类分析,常用距离来测度样品之间的相似程度。每个样品有p个指标(变量)从不同方面描述其性质,形成一个p维的向量。如果把n个样品看成p维空间中的n个点,则两个样品间相似程度就可用p维空间中的两点距离公式来度量。两点距离公式可以从不同角度进行定义,令dij表示样品Xi与Xj的距离,存在以下的距离公式:1.明考夫斯基距离(5.1)明考夫斯基距离简称明氏距离,按的取值不同又可分成:1/1()()pqqijikjkkdqXX(1)绝对距离(1q)1(1)pijikjkkdXX(5.2)(2)欧氏距离(2q)21/21(2)()pijikjkkdXX(5.3)(3)切比雪夫距离(q)1()maxijikjkkpdXX(5.4)...