第七章非线性方程与方程组的数值解法第七章非线性方程与方程组的数值解法引言在科学研究和工程设计中,经常会遇到的一大类问题是非线性方程f(x)=0(5.1)的求根问题,其中f(x)为非线性函数。方程f(x)=0的根,亦称为函数f(x)的零点如果f(x)可以分解成,其中m为正整数且,则称x*是f(x)的m重零点,或称方程f(x)=0的m重根。当m=1时称x*为单根。若f(x)存在m阶导数,则是方程f(x)的m重根(m>1)当且仅当)()()(*xgxxxfm0)(*xg0)(,0)()()(*)(*)1(**xfxfxfxfmm记笔记当f(x)不是x的线性函数时,称对应的函数方程为非线性方程。如果f(x)是多项式函数,则称为代数方程,否则称为超越方程(三角方程,指数、对数方程等)。一般称n次多项式构成的方程)0(00111nnnnnaaxaxaxa为n次代数方程,当n>1时,方程显然是非线性的一般稍微复杂的3次以上的代数方程或超越方程,很难甚至无法求得精确解。本章将介绍常用的求解非线性方程的近似根的几种数值解法记笔记通常方程根的数值解法大致分为三个步骤进行通常方程根的数值解法大致分为三个步骤进行①①判定根的存在性。即方程有没有根?如果有判定根的存在性。即方程有没有根?如果有根,有几个根?根,有几个根?②②确定根的分布范围。即将每一个根用区间隔确定根的分布范围。即将每一个根用区间隔离开来,这个过程实际上是获得方程各根离开来,这个过程实际上是获得方程各根的的初始近似值。初始近似值。③③根的精确化。将根的初始近似值按某种方法根的精确化。将根的初始近似值按某种方法逐步精确化,直到满足预先要求的精度为逐步精确化,直到满足预先要求的精度为止止本章介绍方程的迭代解法,它既可以用来求解代数方程,也可以用来解超越方程,并且仅限于求方程的实根。运用迭代法求解方程的根应解决以下两个问题:确定根的初值;将进一步精确化到所需要的精度。记笔记7.1二分法二分法又称二分区间法,是求解方程(5.1)的近似根的一种常用的简单方法。设函数f(x)在闭区间[a,b]上连续,且f(a)f(b)<0,根据连续函数的性质可知,f(x)=0在(a,b)内必有实根,称区间[a,b]为有根区间。为明确起见,假定方程f(x)=0在区间[a,b]内有惟一实根x*。二分法的基本思想是:首先确定有根区间,将区间二等分,通过判断f(x)的符号,逐步将有根区间缩小,直至有根区间足够地小,便可求出满足精度要求的近似根。7.1.1确定有根区间的方法为了确定根的初值,首先必须圈定根所在的范围,称为圈定根或根的隔离。在上述基...