函数的单调性与最值[考试要求]1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.1.函数的单调性(1)单调函数的定义.类别增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)是单调递增当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)是单调递减图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义.如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.提醒:(1)单调区间只能用区间表示,不能用不等式或集合表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M为y=f(x)的最大值M为y=f(x)的最小值1.函数单调性的结论1(1)∀x1,x2∈D(x1≠x2),⇔f(x)在D上是增函数;⇔f(x)在D上是减函数.(2)对勾函数y=x+(a>0)的单调递增区间为(-∞,-]和[,+∞),单调递减区间为[-,0)和(0,].(3)当f(x),g(x)都是增(减)函数时,f(x)+g(x)是增(减)函数.(4)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)的单调性相反.(5)函数y=f(x)在公共定义域内与y=的单调性相反.(6)复合函数y=f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性关系是“同增异减”.2.函数最值存在的两个结论(1)闭区间上的连续函数一定存在最大值和最小值.(2)开区间上的“单峰”函数一定存在最大(小)值.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)函数y=的单调递减区间是(-∞,0)∪(0,+∞).()(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数.()(3)定义域为[1,+∞)的函数y=f(x)是增函数,则函数的单调递增区间是[1,+∞).()(4)闭区间上的单调函数,其最值一定在区间端点取到.()[答案](1)×(2)×(3)×(4)√二、教材习题衍生1.(多选)如果函数f(x)在[a,b]上单调递增,则对于任意的x1,x2∈[a,b](x1≠x2),下列结论中正确的是()A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)≤f(x1)<f(x2)≤f(b)D.f(x1)≠f(x2)ABD[由函数单调性的定义可...