[基础题组练]1.数列{an}的通项公式是an=(-1)n(2n-1),则该数列的前100项之和为()A.-200B.-100C.200D.100解析:选D.由题意知S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.2.在数列{an}中,a1=2,a2=2,an+2-an=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99解析:选A.n为奇数时,an+2-an=0,an=2;n为偶数时,an+2-an=2,an=n.故S60=2×30+(2+4+…+60)=990.3.(2019·河北“五个一名校联盟”模拟)已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=1,a2=2,Sn为数列{an}的前n项和,则S2018=()A.3B.2C.1D.0解析:选A.因为an+1=an-an-1,a1=1,a2=2,所以a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…,故数列{an}是周期为6的周期数列,且每连续6项的和为0,故S2018=336×0+a2017+a2018=a1+a2=3.故选A.4.+++…+的值为()A.B.-C.-D.-+解析:选C.因为===,所以+++…+===-.5.(2019·开封调研)已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2018等于()A.22018-1B.3×21009-3C.3×21009-1D.3×21008-2解析:选B.a1=1,a2==2,又==2,所以=2.所以a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,所以S2018=a1+a2+a3+a4+a5+a6+…+a2017+a2018=(a1+a3+a5+…+a2017)+(a2+a4+a6+…+a2018)=+=3·21009-3.故选B.6.(2019·郑州质量预测)已知数列{an}的前n项和为Sn,a1=1,a2=2,且an+2-2an+1+an=0(n∈N*),记Tn=++…+(n∈N*),则T2018=________.解析:由an+2-2an+1+an=0(n∈N*),可得an+2+an=2an+1,所以数列{an}为等差数列,公差d=a2-a1=2-1=1,通项公式an=a1+(n-1)×d=1+n-1=n,则其前n项和Sn==,所以==2(-),Tn=++…+=2(-+-+…+-)=2(1-)=,故T2018==.答案:7.已知数列{an}中,a1=2,且=4(an+1-an)(n∈N*),则其前9项和S9=________.解析:由已知,得a=4anan+1-4a,即a-4anan+1+4a=(an+1-2an)2=0,所以an+1=2an,所以数列{an}是首项为2,公比为2的等比数列,故S9==210-2=1022.答案:10228.已知数列{an}满足an+1=+,且a1=,则该数列的前2018项的和等于________.解析:因为a1=,又an+1=+,所以a2=1,从而a3=,a4=1,即得an=故数列的前2018项的和等于S2018=1009×=.答案:9.(2019·唐山模拟)已...