7.2解二元一次方程组(二)加减法●教学目标(一)教学知识点1.用加减消元法解二元一次方程组.2.进一步了解解二元一次方程组时的“消元”思想,“化未知为已知”化归思路.(二)能力训练要求1.会用加减消元法解二元一次方程组.2.根据不同方程的特点,进一步体会解二元一次方程组的基本思路——消元.(三)情感与价值观要求1.进一步体会解二元一次方程组的消元思想,在化“未知为已知”的过程中,体验学习的快乐.2.根据方程组的特点,培养学生学习教学的创新、开拓的意识.●教学重点1.掌握加减消元法解二元一次方程组的原理及一般步骤.2.能熟练地运用加减消元法解二元一次方程组.●教学难点1.解二元一次方程组的基本思路消元即化“二元”为“一元”的思想.2.数学研究的“化未知为已知”的化归思想.●教学方法启发——比较——自主探索相结合.由一个引例启发学生除可以利用代入消元法可以消去一个未知数,获得问题的解答.通过观察比较可以发现如果某个未知数的系数相反或相同,这时我们就可以依据等式的性质将方程两边相加或相减,从而消去一个未知数,从而更进一步引导学生自主探索解二元一次方程组的加减消元法直至熟练掌握.●教具准备投影片一张:问题串(记作§7.2.2A).●教学过程1/11Ⅰ.提出疑问,创设问题情景,引入新课[师]怎样解下面的二元一次方程组呢?[生1]解:把②变形,得x=③把③代入①,得3×+5y=21,解得y=-3.把y=3代入②,得x=2.所以方程组的解为[生2]解:由②得5y=2x+11③把5y当做整体将③代入①,得3x+(2x+11)=21解得x=2把x=2代入③,得5y=2×2+11y=3所以原方程的解为[师]我们可以发现第二种解法比第一种解法简单.有没有更好的解法呢?也就是说,我们上一节课学习了用代入的方法可以消元,从而使“二元”变为“一元”.那么有没有别的消元办法也可以使“二元”变为“一元”.[生]我发现了方程①和②中的5y和-5y互为相反数,根据互为相反数的和为零,如果能将方程①和②的左右两边相加,根据等式的性质我们可以得到一个含有x的等式,即一元一次方程,而5y+(-5y)=0消去了y.[师]很好.这正是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.Ⅱ.讲授新课[师]下面我们就用刚才这位同学的方法解上面的二元一次方程组.2/11解:由①+②,得(3x+5y)+(2x-5y)=21+(-11),即3x+2x=10,x=2,把x=2代入②中,得y=3.所以原方程组的解为[师生共析]一个方程组我们用了三种方...