3.7正多边形与圆1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系.(重点)3.会应用正多边形和圆的有关知识解决实际问题.(难点)学习目标问题:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出类似的图形吗?导入新课观察与思考回顾:什么叫做正多边形?各边相等,各角也相等的多边形叫做正多边形.问题矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?不是,因为矩形不符合各边相等;不是,因为菱形不符合各角相等;注意正多边形各边相等各角相等缺一不可讲授新课正多边形的对称性问题正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?正多边形都是轴对称图形,一个正n边形有n条对称轴.正多边形的各条对称轴相交于一点,这点到正多边形的各个顶点的距离相等,到各边的距离也相等..问题正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?归纳互动探究OABCD问题1以正四边形为例,根据对称轴的性质,你能得出什么结论?EFGHEF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD;OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.正多边形的性质OABCDEFGHAC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.所有的正多边形是不是也都有一个外接圆和一个内切圆?任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,圆心是各对称轴的交点.想一想OABCDEFGHRr正多边形的外接圆和内切圆的公共圆心,叫作正多边形的中心.外接圆的半径叫作正多边形的半径.内切圆的半径叫作正多边形的边心距.知识要点正多边形每一边所对的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于360n问题1中心角ABCDEFO半径R边心距r中心正多边形边数内角中心角外角346n60°120°120°90°90°90°120°60°60°(2)180nn360n360n正多边形的外角=中心角练一练完成下面的表格:如图,已知半径为4的圆内接正六边形ABCDEF:①它的中心角等于度;②OCBC(填>、<或=);③△OBC是三角形;④圆内接正六边形的面积是△OBC面积的倍.⑤圆内接正n边形面积公式:_____________________.CDOBEFAP60=等边61=2S正多边形周长边心距探究归纳正多边形的有关计算例1:有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).CDOEFAP抽象成典例精析利用勾...