118.1.1平行四边形的性质第2课时教学目标【知识与技能】理解并掌握平行四边形的对角线互相平分的性质,并能用它来解决问题.【过程与方法】通过活动探究获得平行四边形的对角线互相平分的性质过程中,增强学生的合作交流意识和探究精神,培养分析问题,解决问题的能力.【情感态度】在问题解决过程中让学生体验成功的快乐,激发学习数学的兴趣.教学重难点【教学重点】平行四边形的对角线互相平分这一性质的探究与应用.【教学难点】综合运用平形四边形性质解决问题.课前准备无教学过程一、情境导入,初步认识探究如图,在纸上画ABCD,将它剪下,再在一张纸上沿ABCD的边缘画一个与ABCD相同的EFGH.在它们的中心(两条对角线的交点)钉一个图钉,将ABCD绕点O旋转180°后,它能与EFGH重合吗?从中你能看出上节课得到的ABCD的边、角关系吗?进一步地,你能发现OA与OC,OB与OD的关系吗?【教学说明】教学时,教师应给出适当的时间让学生能够完成操作实践,并通过观察思考获得结论,一方面巩固上节课学过的两个性质,另一方面又为本节探讨平行四边形对角线互相平分的性质作铺垫,引入新课.二、思考探究,获取新知通过ABCD绕点O旋转180°后与EFGH重合,易发现OA=OC,OB=OD这一结论,于是有:平行四边形的对角线互相平分,即在ABCD中,AC、BD相交于O,则有OA=OC,OB=OD.思考请观察下边的图形(在ABCD中,AC、BD相交于O),你能证明上述结论吗?2【教学说明】教师可引导学生利用三角形全等来得到上述结论,让学生自主完成证明过程.三、典例精析,掌握新知例1如图,四边形ABCD是平行四边形,且AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长及ABCD的面积.【分析】由平行四边形的对边相等易知BC=AD=8,CD=AB=10,再在Rt△ACB中,AB=10,BC=8,∠ACB=90°,∴AC=6,由平行四边形的对角线互相平分知OA=OC=12AC=3,从而易得ABCD的面积为BC×AC=6×8=48.【教学说明】教师给出本题后,应让学生先独立完成试试,然后教师给出评讲,让学生在成功或挫折中加深对知识的领悟.例2如图,ABCD的对角线AC、BD相交于点O,过点O的一直线交AD于E,交BC于F.求证:OE=OF.【分析】由平行四边形的性质有OA=OC,又AD∥BC,故∠EAO=∠FCO,又由∠AOE=∠COF易知△AOE≌△COF,从而OE=OF.【教学说明】本例仍可先让学生自己独立完成,然后相互交流,教师巡视,对有困难同学及时予以指导.四、运用新知,深化理解1.如图,在ABCD中,BC=10cm,AC=8cm,BD=14cm,△AOD的周长是多少?为什么?△ABC与...