28.2.2应用举例第2课时利用仰俯角解直角三角形1.使学生掌握仰角、俯角的意义,并学会正确地判断;(重点)2.初步掌握将实际问题转化为解直角三角形问题的能力.(难点)一、情境导入在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.二、合作探究探究点:利用仰(俯)角解决实际问题【类型一】利用仰角求高度星期天,身高均为1.6米的小红、小涛来到一个公园,用他们所学的知识测算一座塔的高度.如图,小红站在A处测得她看塔顶C的仰角α为45°,小涛站在B处测得塔顶C的仰角β为30°,他们又测出A、B两点的距离为41.5m,假设他们的眼睛离头顶都是10cm,求塔高(结果保留根号).解析:设塔高为xm,利用锐角三角函数关系得出PM的长,再利用=tan30°,求出x的值即可.解:设塔底面中心为O,塔高xm,MN∥AB与塔中轴线相交于点P,得到△CPM、△CPN是直角三角形,则=tan45°, tan45°=1,∴PM=CP=x-1.5.在Rt△CPN中,=tan30°,即=,解得x=.答:塔高为m.第1页共3页方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】利用俯角求高度如图,在两建筑物之间有一旗杆EG,高15米,从A点经过旗杆顶部E点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°.若旗杆底部G点为BC的中点,求矮建筑物的高CD.解析:根据点G是BC的中点,可判断EG是△ABC的中位线,求出AB.在Rt△ABC和Rt△AFD中,利用特殊角的三角函数值分别求出BC、DF,继而可求出CD的长度.解:过点D作DF⊥AF于点F, 点G是BC的中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30m.在Rt△ABC中, ∠CAB=30°,∴BC=ABtan∠BAC=30×=10m.在Rt△AFD中, AF=BC=10m,∴FD=AF·tanβ=10×=10m,∴CD=AB-FD=30-10=20m.答:矮建筑物的高为20m.方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型三】利用俯角求不可到达的两点之间的距离如图,为了测量河的宽度AB,...