第3课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.【过程与方法】让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质.【情感态度】培养学生观察、思考、归纳的良好思维习惯.【教学重点】确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质.【教学难点】正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质.一、情境导入,初步认识1.函数y=x2+1的图象与函数y=x2的图象有什么关系?2.函数y=(x-2)2的图象与函数y=x2的图象有什么关系?3.函数y=(x-2)2+1的图象与函数y=(x-2)2的图象有什么关系?函数y=(x-2)2+1有哪些性质?【教学说明】通过提问的形式,对上节课的知识进行复习巩固,并且为本节课探究二次函数y=a(x-h)2+k的性质作铺垫.二、思考探究,获取新知1.在同一直角坐标系中,画出下列函数y=x2、y=(x-2)2、y=(x-2)2+1的图象.2.观察它们的图象,回答:它们的开口方向都向________,对称轴分别为________、________、________,顶点坐标分别为________、________、________.请同学们完成填空,并观察三个图象之间的关系.【归纳结论】函数y=(x-2)2+1的图象可以看成是将函数y=(x-2)2的图象向上平称1个单位得到的,也可以看成是将函数y=x2的图象向右平移2个单位再向上平移1个单位得到的.二次函数的图象的上下平移,只影响二次函数y=a(x-h)2+k中k的值;左右平移,只影响h的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.你能说出函数y=a(x-h)2+k(a、h、k是常数,a≠0)的图象的开口方向、对称轴和顶点坐标吗?【归纳总结】对于二次函数y=a(x-h)2+k.(1)开口方向由a决定,(2)对称轴是直线x=h,当h<0时,在y轴左侧,当h>0时在y轴右侧,(3)顶点坐标为(h,k),(4)最值:当a>0时,x=h时y最小值=k;当a<0时,x=h时y最大值=k.形如y=a(x-h)2+k(a≠0)的二次函数解析式称为顶点式,顶点式能直接反映出抛物线的顶点坐标.三、运用新知,深化理解1.抛物线y=-3(x-2)2+4的开口方向、对称轴、顶点...