22.3实际问题与二次函数/22.3实际问题与二次函数(第2课时)人教版数学九年级上册22.3实际问题与二次函数/在日常生活中存在着许许多多的与数学知识有关的实际问题.如繁华的商业城中很多人在买卖东西。【思考】如果你去买商品,你会选哪一家店呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?导入新知22.3实际问题与二次函数/素养目标2.弄清商品销售问题中的数量关系及确定自变量的取值范围.1.能应用二次函数的性质解决商品销售过程中的最大利润问题.22.3实际问题与二次函数/某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.180006000(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.探究新知利润问题中的数量关系知识点【数量关系】22.3实际问题与二次函数/例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10xy=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.6000如何定价利润最大素养考点1探究新知22.3实际问题与二次函数/②自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x≥0,且x≥0,因此自变量的取值范围是0≤x≤30.③涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.10052(10)x即定价65元时,最大利润是6250元.探究新知22.3实际问题与二次函数/降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18xy=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即y=-18x2+60x+6000.例2某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?6000探究新知22.3实际问题与二次函数/综合可知,应定价65元时,才能使利润最大.②自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单...