1.4.1全称量词1.4.2存在量词1.4全称量词与存在量词通过哥德巴赫猜想的知识链接和运动会排练的情景引入新课,激发学生学习新知的欲望,本课系统地学习了全称量词与存在量词、全称命题与特称命题.以学生自主探究为主,学习全称量词与存在量词、全称命题与特称命题.探究怎样判断全称命题与特称命题的真假.例1探讨全称命题的真假判断问题.通过例2探讨使用不同的表达方法写出特称命题,例3是辨别全称命题与特称命题。对于一些像“至少有一个”“至多有2个”之类的存在量词,在讲解的过程中老师因注意其意义的理解。还有些命题把这些量词省略了,讲解过程中也应注意。德国著名的数学家哥德巴赫提出这样一个问题:“任意取一个奇数,可以把它写成三个质数之和,比如77,77=53+17+7”,同年欧拉首先肯定了哥德巴赫猜想的正确,并且认为:每一个偶数都是两个质数之和,虽然通过大量检验这个命题是正确的,但是不需要证明.这就是被誉为“数学皇冠上的明珠”的哥德巴赫猜想.200多年后我国著名数学家陈景润才证明了“1+2”即:凡是比某一个正整数大的任何偶数,都能表示成一个质数加上两个质数相乘,或者表示成一个质数加上一个质数.从陈景润的“1+2”到“1+1”似乎仅一步之遥,但它是一个迄今为止仍然没有得到正面证明也没有被推翻的命题.要想正面证明就需要证明“任意一个”“每一个”“都”这种命题成立,要想推翻它只需“存在一个”反例.我们学校为了迎接10月28号的秋季田径运动会,正在排练由1000名学生参加的开幕式团体操表演.这1000名学生符合下列条件:(1)所有学生都来自高二年级;(2)至少有30名学生来自高二.一班;(3)每一个学生都有固定表演路线.结合图片及上述文字,引出“所有”,“至少有”,“每一个”等短语,在逻辑上称为量词.预习教材,回答下列问题:问题1:新课导入的影片中出现了“所有”、“每一个”等词语,这些词语一般在指定的范围内都表示整体或全部,这样的词叫做量词,用符号“”表示,含有量词的命题,叫做命题.全称全称全称问题2:影片中用到了“至少有30名”这样的词语,这些词语都是表示整体的一部分的词叫做量词。并用符号“”表示.含有量词的命题叫做命题(或存在命题).存在特称存在目标全称量词与全称命题1存在量词与特称命题2怎样判断全称命题的真假3怎样判断特称命题的真假4问题:下列语句是命题吗?问题:下列语句是命题吗?(1)(1)与与(3)(3),,(2)(2)与与(4)(4)之间有什么关系?之间有什么关系?(1)3x;(...