第二讲参数方程一曲线的参数方程第1课时参数方程的概念、圆的参数方程【自主预习】1.曲线的参数方程的定义一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数________①,并且对于t的每一个允许值,由方程组①所确定的点M(x,y)都在这条曲线上,那么方程组①就叫做这条曲线的参数方程.变数t叫做参变数,简称_____.xft,yg(t)参数2.圆的参数方程圆心和半径圆的坐标方程圆的参数方程圆心O(0,0),半径rx2+y2=r2圆心C(a,b),半径r(x-a)2+(y-b)2=r2xrcos,yrsinxarcos,ybrsin【即时小测】1.曲线(θ为参数)围成图形的面积等于()A.πB.2πC.3πD.4πx12cosy32sin,【解析】选D.曲线即(θ为参数)表示圆心为(-1,3),半径为2的圆,所以面积等于4π.x12cosy32sin,,x12cosy32sin,,2.已知(t为参数),若y=1,则x=________.【解析】若y=1,则t2=1,则t=±1,x=0或2.答案:0或22xt1yt,【知识探究】探究点参数方程的概念、圆的参数方程1.曲线的参数方程中参数的实际意义是什么?提示:在曲线的参数方程中,参数可以有明确的几何意义,也可以有明确的物理意义,如时间、旋转角等.当然也可以是没有实际意义的变数.2.圆的参数方程中参数的几何意义是什么?提示:(1)圆的参数方程中参数θ的几何意义:射线Ox绕点O逆时针旋转到OM(M(x,y)是圆上的任意一点)位置时转过的角度.如图所示.xrcosyrsin,(2)圆的参数方程中参数θ的几何意义:如图所示,设其圆心为C,CM0∥x轴,则参数θ的几何意义是CM0绕点C逆时针旋转到CM(M(x,y)是圆上的任意一点)位置时转过的角度.xarcosybrsin,【归纳总结】1.曲线的参数方程的理解与认识(1)参数方程的形式:曲线上点的横、纵坐标x,y都是变量t的函数,给出一个t能唯一地求出对应的x,y的值,因而得出唯一的对应点;但是横、纵坐标x,y之间的关系并不一定是函数关系.(2)参数的取值范围:在表示曲线的参数方程时,必须指明参数的取值范围.因为取值范围不同,所表示的曲线也会有所不同.2.参数方程与普通方程的统一性(1)参数的作用:参数是间接地建立横、纵坐标x,y之间的关系的中间变量,起到了桥梁的作用.(2)参数方程与普通方程的转化:曲线的普通方程是相对参数方程而言的,普通方程反映了坐标变量x与y之间的直接联系,而参数方程是通过变数反映坐标变量x与y之间的间接联系.特别提醒:普通方程和参数方...