分享
2002考研数三真题解析.doc
下载文档

ID:3251605

大小:1.30MB

页数:19页

格式:DOC

时间:2024-02-07

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2002 考研 数三真 题解
2002年全国硕士研究生入学统一考试数学三试题 一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上) (1) 设常数,则 (2) 交换积分次序:. (3) 设三阶矩阵,三维列向量.已知与线性相关,则 . (4) 设随机变量和的联合概率分布为 -1 0 1 0 0.07 0.18 0.15 1 0.08 0.32 0.20 则和的协方差. (5) 设总体的概率密度为 而是来自总体的简单随机样本,则未知参数的矩估计量为 二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1) 设函数在闭区间上有定义,在开区间内可导,则 ( ) (A)当时,存在,使. (B)对任何,有. (C)当时,存在,使. (D)存在,使. (2) 设幂级数与的收敛半径分别为与,则幂级数的收敛半径为 ( ) (A) 5 (B) (C) (D) (3) 设是矩阵,是矩阵,则线性方程组 ( ) (A)当时仅有零解 (B)当时必有非零解 (C)当时仅有零解 (D)当时必有非零解 (4) 设是阶实对称矩阵,是阶可逆矩阵,已知维列向量是的属于特征值的 特征向量,则矩阵属于特征值的特征向量是 ( ) (A) (B) (C) (D) (5) 设随机变量和都服从标准正态分布,则 ( ) (A)服从正态分布 (B)服从分布 (C)和都服从分布 (D)服从分布 三、(本题满分5分) 求极限 四、(本题满分7分) 设函数有连续偏导数,且由方程所确定,求. 五、(本题满分6分) 设求. 六、(本题满分7分) 设是由抛物线和直线及所围成的平面区域;是由抛物线和直线所围成的平面区域,其中. (1)试求绕轴旋转而成的旋转体体积;绕轴旋转而成的旋转体体积; (2)问当为何值时,取得最大值?试求此最大值. 七、(本题满分7分) (1)验证函数满足微分方程 (2)利用(1)的结果求幂级数的和函数. 八、(本题满分6分) 设函数在上连续,且.利用闭区间上连续函数性质,证明存在一点,使 . 九、(本题满分8分) 设齐次线性方程组 其中,试讨论为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解. 十、(本题满分8分) 设为三阶实对称矩阵,且满足条件,已知的秩 (1)求的全部特征值 (2)当为何值时,矩阵为正定矩阵,其中为三阶单位矩阵. 十一、(本题满分8分) 假设随机变量在区间上服从均匀分布,随机变量 试求:(1)和的联合概率分布;(2). 十二、(本题满分8分) 假设一设备开机后无故障工作的时间服从指数分布,平均无故障工作的时间 为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间的分布函数. 2002年全国硕士研究生入学统一考试数学三试题解析 一、填空题 (1)【答案】 【详解】里面为型,通过凑成重要极限形式来求极限, . (2)【答案】 【详解】画出与原题中二次积分的限所对应的积分区域与,将它们的并集记为. 于是 . 再将后者根据积分定义化为如下形式,即,所以 (3)【答案】 【详解】 由于与线性相关,(两个非零向量线性相关,则对应分量成比例),所以有 ,得 或(两个非零向量线性相关,则其中一个可以由另一个线性表出) 即 ,得 ,得 (4)【答案】. 【详解】、和都是分布,而分布的期望值恰为取时的概率. 由离散型随机变量和的联合概率分布表可得的可能取值为0和1,且的可能取值也为0和1,且和的边缘分布为 ;; ;; ; 故有 而边缘分布律: ,, , 所以,的联合分布及其边缘分布为 0 1 0 0.18 0.22 0.40 1 0.32 0.28 0.60 0.50 0.50 1 由上表同理可求得的分布律为 0 1 0.72 0.28 所以由分布的期望值恰为取1时的概率得到: (5)【答案】. 【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望) 期望 样本均值 用样本均值估计期望有 ,即 , 解得未知参数的矩估计量为 . 二、选择题 (1)【答案】(B) 【详解】方法1:论证法.由题设在开区间内可导,所以在内连续,因此,对于内的任意一点,必有 即有.故选(B). 方法2:排除法. (A)的反例:,有,但在内无零点. (C)与(D)的反例, ,但(当),不满足罗尔中值定理,当然也不满足拉格朗日中值定理的结论.故选(B). (2)【答案】(D) 【详解】方法1:是矩阵,是矩阵,则是阶方阵,因 . 当时,有.(系数矩阵的秩小于未知数的个数)方程组必有非零解,故应选(D). 方法2:是矩阵, 当时,,则,(系数矩阵的秩小于未知数的个数)方程组必有非零解,即存在,使得,两边左乘,得,即有非零解,故选(D). (3)【答案】(B) 【详解】方法1:由题设根据特征值和特征向量的定义,,是阶实对称矩阵,故.设,则 上式左乘,右乘,得 ,即, 所以 两边左乘,得 得 根据特征值和特征向量的定义,知的对应于特征值的特征向量为,即应选(B). 方法2:逐个验算(A),(B),(C),(D)中哪个选项满足,由题设根据特征值和特征向量的定义,,是阶实对称矩阵,故.设属于特征值的特征向量为,即,其中 对(A),即令,代入 对(B), 成立.故应选(B). (4)【答案】C 【分析】(i)变量的典型模式是:,其中要求满足:相互独立,.称为参数为的变量. (ii) 变量的典型模式是:,其中要求满足:与相互独立,,称为参数为的变量. 【详解】方法1:根据题设条件,和均服从.故和都服从分布,答案应选(C). 方法2:题设条件只有和服从,没有与的相互独立条件.因此,与的独立条件不存在,选(B)、(D)项均不正确. 题中条件既没有与独立,也没有正态,这样就不能推出服从正态分布的选项(A).根据排除法,正确选项必为(C). 三【详解】 . 四【详解】方法1:用一阶微分形式不变性求全微分. 由所确定,两边求全微分,有 , 解出 所以 方法2:(根据多元函数偏导数的链式法则) 下面通过隐函数求导得到,.由两边对求偏导数,有 得,.类似可得,,代入表达式 , 再代入 中,得 . 五【详解】首先要从求出. 命,则有,,于是.(通过换元求出函数的表达式) (换元积分法) (分部积分法) . 六【分析】旋转体的体积公式:设有连续曲线,与直线及轴围成平面图形绕轴旋转一周产生旋转体的体积. 【详解】(1) . (2) 根据一元函数最值的求法要求驻点,令 , 得. 当时,当时,因此是的唯一极值点且是极大值点,所以是的最大值点,. 七【解】(1) , 由收敛半径的求法知收敛半径为,故由幂级数在收敛区间上逐项可导公式得 , 同理得 从而 (由的麦克劳林展开式) 这说明,是微分方程的解,并且满足初始条件 ,. (2)微分方程对应的齐次线性方程为,其特征方程为,其特征根为,所以其通解为 . 另外,该非齐次方程的特解形式为,代入原非齐次方程得,所以.故微分方程的通解为 . 故 由初始条件得 解得 , 于是得到惟一的一组解:从而得到满足微分方程及初始条件的解,只有一个,为 另一方面,由(1)已知也是微分方程及初始条件的解,由微分方程解的唯一性,知 八【详解】方法1:因为与在上连续,所以存在使得 ,, 满足.又,故根据不等式的性质 根据定积分的不等式性质有 所以 由连续函数的介值定理知,存在,使 即有 . 方法2:因为与在上连续,且,故与都存在,且 记,于是即 因此必存在使.不然,则在内由连续函数的零点定理知要么恒为正,从而根据积分的基本性质得;要么恒为负,同理得,均与不符.由此推知存在使,从而 . 九【详解】方法1:对系数矩阵记为作初等行变换 当时,的同解方程组为,基础解系中含有个(未知数的个数-系数矩阵的秩)线性无关的解向量,取为自由未知量,分别取,,…, 得方程组个线性无关的解 , 为基础解系,方程组的全部解为,其中是任意常数. 当时, 当且时,,仅有零解. 当时,的同解方程组是 基础解系中含有个线性无关的解向量,取为自由未知量,取,得方程组个非零解,即其基础解系,故方程组的全部解为 ,其中是任意常数. 方法2:方程组的系数行列式 (1)当且时,,方程组只有零解. (2)当时, 方程组的同解方程组为 基础解系中含有个(未知数的个数-系数矩阵的秩)线性无关的解向量,取为自由未知量,分别取,,…, 得方程组个线性无关的解 , 为基础解系,方程组的全部解为,其中是任意常数. (1)当时, ,其同解方程组是 基础解系中含有个线性无关的解向量,取为自由未知量,取,得方程组个非零解,即其基础解系,故方程组的全部解为 ,其中是任意常数. 十【详解】(1) 设是的任意特征值,是的属于的特征向量,根据特征值、特征向量的定义,有 ① 两边左乘,得 ② ②+2*①得 因,,从而上式, 所以有,故的特征值的取值范围为. 因为是实对称矩阵,所以必相似于对角阵,且的主对角线上元素由的特征值组成,且,故的特征值中有且只有一个0. (若没有0,则,故与已知矛盾;若有两个0,则,故与已知矛盾;若三个全为0,则,故与已知矛盾). 故 即有特征值. (2)是实对称矩阵,有特征值,知的特征值为.因为矩阵正定的充要条件是它的所有的特征值均大于零,故 正定 故时是正定矩阵. 十一【分析】有四个可能值,可以逐个求出.在计算过程中要注意到取值与的值有关.的分布为均匀分布,计算概率不用积分都行,可以直接看所占区间的长度比例即可. 【详解】只有四个可能值.依照题意,有 于是,分布为 (2) 因为,所以我们应该知道和的分布律. 对离散型随机变量,的取值可能有的取值可能有0和4; . 和的分布律分别为 0 4 0 2 和 所以由离散型随机变量的数学期望计算公式有: 所以有,. 十二【详解】首先找出随机变量的表达式. 由和2(小时)来确定,所以. 指数分布的的分布参数为 其密度函数为: 其中是参数 由分布函数的定义: (1) 当时,(因为,其中和2都大于0,那么小于0是不可能事件) (2) 当时,(因为最大也就取到2,所以小于等于2是一定发生的,是必然事件) (3) 当时, 所以

此文档下载收益归作者所有

下载文档
收起
展开