(11)用交集解题【知识精读】1.某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如6的正约数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10……},它的个元素有无数多个。2.由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集例如6的正约数集合A={1,2,3,6},10的正约数集合B={1,2,5,10},6与10的公约数集合C={1,2},集合C是集合A和集合B的交集。3.几个集合的交集可用图形形象地表示,右图中左边的椭圆表示正数集合,右边的椭圆表示整数集合,中间两个椭圆的公共部分,是它们的交集――正整数集。不等式组的解集是不等式组中各个不等式解集的交集。例如不等式组解的集合就是不等式(1)的解集x>3和不等式(2)的解集x>2的交集,x>3.如数轴所示:0234.一类问题,它的答案要同时符合几个条件,一般可用交集来解答。把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,求得答案。(如例2)分类解析】例1.一个自然数除以3余2,除以5余3,除以7余2,求这个自然数的最小值。解:除以3余2的自然数集合A={2,5,8,11,14,17,20,23,26,……}除以5余3的自然数集B={3,8,13,18,23,28,……}除以7余2自然数集合C={2,9,16,23,30,……}集合A、B、C的公共元素的最小值23就是所求的自然数。例2.有两个二位的质数,它们的差等于6,并且平方数的个位数字相同,求这两个数。解:二位的质数共21个,它们的个位数字只有1,3,7,9,即符合条件的质数它们的个位数的集合是{1,3,7,9};其中差等于6的有:1和7;3和9;13和7,三组;平方数的个位数字相同的只有3和7;1和9二组。同时符合三个条件的个位数字是3和7这一组故所求质数是:23,17;43,37;53,47;73,67共四组。例3.数学兴趣小组中订阅A种刊物的有28人,订阅B种刊物的有21人,其中6人两种都订,只有一人两种都没有订,问只订A种、只订B种的各几人?数学兴趣小组共有几人?解:如图左、右两椭圆分别表示订阅A种、B种刊物的人数集合,则两圆重叠部分就是它们的交集(A、B两种都订的人数集合)。∴只订A种刊物的人数是28-6=22人;只订B刊物的人数是21-6=15人;小组总人数是22+15+6+1=44人。Õû...