第十三周乘除巧算专题简析:前面我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实际上这种凑整的方法也同样可以运用在乘除计算中。为了更好地凑整,同学们要牢记以下几个计算结果:2×5=10,4×25=100,8×125=1000。提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。例题1你有好办法算出下面各题的结果吗?(1)25×17×4(2)8×18×125(3)8×25×4×125(4)125×2×8×5思路导航:(1)我们知道25×4=100,因而我们要尽量把25与4放在一块计算,这样比较简便。所以我们先算25×4=100,再与17相乘即100×17=1700;(2)因为8×125=1000,因而我们先把8与125放在一块计算,8×125=1000,再乘18:1000×18=18000;(3)已知25×4=100、125×8=1000,因此这道题我们要通过移位的方法把25与4相乘,125与8相乘,然后再把1000与100相乘,1000×100=100000;(4)因为125×8=1000,2×5=10,因而这道题也要移一移,先计算125×8=1000和2×5=10,再计算1000×10=10000。练习一1,计算:(1)25×23×4(2)125×27×82,计算:(1)5×25×2×4(2)125×4×8×25(3)2×125×8×53,想一想,怎样算比较简便?125×16例题2你有好办法计算下面各题吗?(1)25×8(2)16×125(3)16×25×25(4)125×32×25思路导航:(1)已知25×4=100,因为8=2×4,所以我们可以把25×8转化为25×4×2,然后先算25×4=100,再算出100×2=200。(2)125×8=1000,16=8×2,因而我们可以把16×125转化为2×(8×125),然后算出8×125=1000,再乘2得到2000;(3)因为25×4×100,16=4×4,这样可以将两个4分别与两个25相乘,所以原式就转化为(4×25)×(4×25),再分别计算,得到结果100×100=10000;(4)因为125×8=1000,25×4=100,我们又发现32=4×8,所以可将4和8分别与25、125相乘,得到(125×8)×(25×4),再分别算出结果为1000×100=100000。练习二1,(1)25×12(2)125×32(3)48×1252,(1)125×16×5(2)25×8×53,(1)125×64×25(2)32×25×25例题3你能很快算出它们的结果吗?(1)82×88(2)51×59思路导航:通过观察,我们可以发现这两题都是两位数乘两位数,被乘数和乘数十位上的数字相同,个位数字和是10,像这样的题目,我们可以将首位...