专题复习(七)——综合探究问题【专题点拨】探索是一中重要的研究问题的方法,也是人们发现新知识的重要手段,非常有利于培养创新能力。探索型问题一般有从特殊到一般的探索和存在型探索型或者从实践中探索,复习时对这些呈现方式具有多样性、活泼性、猜想性、挑战性的探索性试题要多关注,多反思,多总结其解题经验,以增强自己的探究能力。【典例赏析】【例题1】(2017•乐山)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【考点】LO:四边形综合题.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°, ∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°, ∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E, ∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE, ∠D+∠B=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE, ∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE, CA=CB,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E, ∠D+∠B=180°,∠DAB=90°,∴DCB=90°, ∠ACE=90°,∴∠DCA=∠BCE,又 AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又 ∠D+∠B=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.【例题2】(2017湖北江汉)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交D...