知识点拨几何面积问题除了利用常规的五大模型、各种公式求得之外,还可以用图形分割的思想来做。我们发现,在迎春杯几何问题中,这类题目很多。掌握好这种思想方法,可以帮助我们解决很多几何难题。解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。解题思想:这其实就是一种化整为零的思想,各位同学不仅要学会几何题中的这种方法,更要细细体味这种思想在解决各种问题中的妙用。例题精讲模块一、简单分割【例1】3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.【例2】正方形的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCBA【例3】将边长为a的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图那么,边长为的正方形面积是图中阴影部分面积的________倍.【例4】正三角形的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.4-2-4图形的分割题库学生版page1of54-2-4.图形的分割CBA【例5】正六边形的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FEDCBAFABCDE【例6】长方形ABCD的面积是40平方厘米,E、F、G、H分别为AC、AH、DH、BC的中点。三角形EFG的面积是平方厘米。HGFEDCBA【例7】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.图1图2【例8】右图中的大正方形ABCD的面积是1,其它点都是它所在的边的中点。请问:阴影三角形的面积是多少?4-2-4图形的分割题库学生版page2of5ABCD【例9】下图中有四条弦,每一条弦都把大圆分割成两个面积比为1:3的区域,而且这些弦的交点恰好是一个正方形的四个顶点。这些弦把圆分割成9个区域,则此正方形的面积是区域P面积的倍。()P模块二、化整为零【例10】在图中,三角形ABC和DEF是两个完全相同的等腰直角三角形,其中DF长9厘米,CF长3厘米,那么阴影部分的面积是多少平方厘米?FEDCBA【例...