§1.2因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.图1图2图3例92014年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1,0)、N(x2,0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P在x轴上截得的弦长MN=4是定值.2.等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MA=MN和NA=NM时,点P的纵坐标是相等的.图文解析(1)已知抛物线的顶点为(0,0),所以y=ax2.所以b=0,c=0.将代入y=ax2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P的坐标为.已知A(0,2),所以>.而圆心P到x轴的距离为,所以半径PA>圆心P到x轴的距离.所以在点P运动的过程中,⊙P始终与x轴相交.(3)如图2,设MN的中点为H,那么PH垂直平分MN.在Rt△PMH中,,,所以MH2=4.所以MH=2.因此MN=4,为定值.等腰△AMN存在三种情况:①...