教学目标:1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2.在两个变量具有线性相关关系时,会在散点图中作出线性直线,会用线性回归方程进行预测;3.知道最小二乘法的含义,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解(线性)相关系数的定义.教学重点:散点图的画法,回归直线方程的求解方法.教学难点:回归直线方程的求解方法.教学方法:引导发现、合作探究.教学过程:一、创设情景,揭示课题客观事物是相互联系的.过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说奎屯王新敞新疆事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.二、学生活动提出问题:两个变量之间的常见关系有几种?(1)确定性的函数关系,变量之间的关系可以用函数表示;(2)相关关系,变量之间有一定的联系,但不能完全用函数来表示.说明:不要认为两个变量间除了函数关系,就是相关关系,事实是,两个变量间可能毫无关系.比如地球运行的速度与某个人的行走速度就可认为没有关系.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/C261813104杯数202434385064如果某天的气温是,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?从下图可以看出,这些点散布在一条直线的附近,故可用一个线性函数近似地表示热茶销量与气温之间的关系.选择怎样的直线近似地表示热茶销量与气温之间的关系?我们有多种思考方案:(1)选择能反映直线变化的两个点,例如取这两点的直线;(2)取一条直线,使得位于该直线一侧和另一侧的点的个数基本相同;(3)多取几组点,确定几条直线方程,再分别算出各条直线斜率、截距的平均值,作为所求直线的斜率、截距;……怎样的直线最好呢?三、建构数学1.最小平方法:用方程为的直线拟合散点图中的点,应使得该直线与散点图中的点最接近.那么,怎样衡量直线与图中六个点的接近程度呢?我们将表中给出的自变量的六个值带入直线方程,得到相应的六个的值:.这六个值与表中相应的实际值应该越接近越好.所以,我们用类似于估计平均数时的思想,考虑离差...