§1.4.2生活中的优化问题举例(2)【学情分析】:在基本方法已经掌握的基础上,本节课重点放在提高学生的应用能力上。【教学目标】:1.掌握利用导数求函数最值的基本方法。2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力3.体会导数在解决实际问题中的作用.【教学重点】:利用导数解决生活中的一些优化问题.【教学难点】:将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。【教法、学法设计】:练---讲---练.【教学过程设计】:教学环节教学活动设计意图(1)复习引入:1、建立数学模型(确立目标函数)是解决应用性性问题的关键2、要注意不能漏掉函数的定义域为课题作铺垫.(2)典型例题讲解例1、用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积。解:设容器底面短边长为xm,则另一边长为(x+0.5)m,高为(14.8-4x-4(x+0.5))/4=(3.2-2x)m则3.2–2x>0,x>0,得00,当10,故当=1000时,y取得最小值,因此,要使平均成本最低,应生产1000件产品.(2)利润函数为,.令,解得.当在附近左侧时,>0;在附近右侧时,<0.故当时,L取得...