疱工巧解牛知识•巧学一、半角的三角函数1.在倍角公式cos2α=1-2sin2α=2cos2α-1中,以α代替2α,以代替α,将得出sin=±,,,我们称之为半角公式,它们是用单角的余弦函数表示半角的弦函数与切函数的.其正负号的选取由所在的象限确定.2.对于半角的切函数,还可写成,我们可从同角的三角函数的商数关系出发,逆用二倍角公式去证明,即.同理,可把的分子、分母同乘以2sin,即可化成.也可从半角的切函数出发,把被开方数转化成一个完全平方的形式,通过开方求值.由于,|tan∴|=.sinα=2sin cos=2tan·cos2,∴sinα与同号.又 1+cosα>0,∴.同理,若把的分子、分母同乘以1-cosα,可转化成.我们也把,称之为半角公式,它是用单角的正、余弦函数表示半角的切函数的.3.对于半角公式,也必须明确“半角”是相对而言,不能认为才是半角.如2α是4α的半角、是3α的半角;反之,、2α分别是、α的倍角.正是根据这个思想,才由二倍角公式得出了半角公式.学法一得关于半角正切的三个公式:公式不带有根号,而且分母为单项式,运用起来特别方便,但要注意它与以下两个公式:和的使用范围不完全相同,后两个公式只要α≠(2k+1)π(k∈Z),而第一个公式除α≠(2k+1)π(k∈Z)之外,还必须有α≠2kπ(k∈Z).当然,这三个公式可以互化,在使用时要根据题目中式子的特征灵活选用.误区警示当所在的象限无法确定时,应保留根号前面的正、负两个符号;当α或的大小确定时,应根据所在的象限,确定根号前的正负号.二、积化和差公式1.公式:sinαcosβ=[sin(α+β)+sin(α-β)];cosαsinβ=[sin(α+β)-sin(α-β)];cosαcosβ=[cos(α+β)+cos(α-β)];sinαsinβ=[cos(α+β)-cos(α-β)].2.公式推导:积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得.如第一个公式,可以由S(α+β)+S(α-β)产生,因为sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ,所以sin(α+β)+sin(α-β)=2sinαcosβ,两边同除以2即得,其他公式同理可以由两角和与差的正余弦公式获得.3.公式特点;同名函数之积化为两角和与差余弦的和(差)的一半,异名函数之积化为两角和与差正弦的和(差)的一半,等式左边为单角α、β,等式右边为它们的和差角.记忆要诀积化和差公式可按如下方法记忆:(1)“+”两角的正弦、余弦的积都可化为[f(α-β)±f(α+β)]的形式.(2)如果两角的函数同为正弦或余弦,则“f”表示余弦;如果一个为正弦一个为余...