课时提升作业(十七)抛物线方程及性质的应用(25分钟60分)一、选择题(每小题5分,共25分)1.抛物线y=x2的焦点关于直线x-y-1=0的对称点的坐标是()A.(2,-1)B.(1,-1)C.D.【解析】选A.y=x2⇒x2=4y,焦点为(0,1),其关于x-y-1=0的对称点为(2,-1).2.(2015·全国卷Ⅰ)已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,点A,B是C的准线与E的两个交点,则=()A.3B.6C.9D.12【解析】选B.设椭圆E的方程为+=1(a>b>0),右焦点为(c,0),依题意得解得a=4,由b2=a2-c2=16-4=12,所以椭圆E的方程为+=1,因为抛物线C:y2=8x的准线为x=-2,将x=-2代入到+=1,解得A(-2,3),B(-2,-3),故=6.3.已知抛物线C:x2=y,过点A(0,-1)和点B(t,3)的直线与抛物线C没有公共点,则实数t的取值范围是()A.(-∞,-1)∪(1,+∞)B.∪C.(-∞,-2)∪(2,+∞)D.(-∞,-)∪(,+∞)【解析】选D.显然t≠0,直线AB的方程为y=x-1,代入抛物线方程得2tx2-4x+t=0.由题意Δ=16-8t2<0,解得t<-或t>.【补偿训练】设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线与抛物线有公共点,则直线斜率的取值范围是()A.B.[-2,2]C.[-1,1]D.[-4,4]【解析】选C.准线x=-2,Q(-2,0),设y=k(x+2),由得k2x2+4(k2-2)x+4k2=0,当k=0时,x=0,即交点为(0,0),当k≠0时,Δ≥0,-1≤k<0或00)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则()A.n=0B.n=1C.n=2D.n≥3【解题指南】借助抛物线及正三角形的对称性求解本题,注意数形结合.【解析】选C.根据抛物线的对称性,正三角形的两个顶点一定关于x轴对称,且过焦点的两条直线倾斜角分别为30°和150°,如图,所以正三角形的个数n=2.二、填空题(每小题5分,共15分)6.沿直线y=-2发出的光线经抛物线y2=ax反射后,与x轴相交于点A(2,0),则抛物线的准线方程为(抛物线的光学性质:从焦点发出的光线经抛物线反射后与轴平行).【解析】由直线y=-2平行于抛物线的对称轴知A(2,0)为焦点,故准线方程为x=-2.答案:x=-27.直线y=x-1被抛物线y2=4x截得线段的中点坐标是.【解析】设直线y=x-1与抛物线y2=4...