函数的极值和导数教案一、教材分析利用上节课导数的单调性作铺垫,借助函数图形的直观性探索归纳出导数的极值定义,利用定义求函数的极值.二、教学目标知识目标:〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件。〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值。能力目标:结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。情感目标:感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。三、教学重点难点教学重点:利用导数求函数的极值。教学难点:函数在某点取得极值的必要条件与充分条件。四、教学方法:探究法五、课时安排:1课时六、教学过程教学基本流程回忆函数的单调性与导数的关系,与已有知识的联系提出问题,激发求知欲组织学生自主探索,获得函数的极值定义通过例题和练习,深化提高对函数的极值定义的理解〈一〉、创设情景,导入新课1、通过上节课的学习,导数和函数单调性的关系是什么?(提问学生回答)2.观察图1.3.8表示高台跳水运动员的高度h随时间t变化的函数()ht=-4.9t2+6.5t+10的图象,回答以下问题1(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数ht在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点?(3)点t=a附近的导数符号有什么变化规律?共同归纳:函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数ht单调递增,'ht>0;当t>a时,函数ht单调递减,'ht<0,即当t在a的附近从小到大经过a时,'ht先正后负,且'ht连续变化,于是h/(a)=0.3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?<二>、探索研讨1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:(1)函数y=f(x)在a,b点的函数值与这些点附近的函数值有什么关系?(2)函数y=f(x)在a,b点的导数值是多少?(3)在a,b点附近,y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值。极大值点与极小值点称为极值点,极大值与极小值称为极值.3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反4、引导学生观察图1.3.10,回答以下问题:2(1)找出图中的极点,并说明哪些点为极大值点,哪些...