§1.4.1生活中的优化问题举例(1)【学情分析】:导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。【教学目标】:1.掌握利用导数求函数最值的基本方法。2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力3.体会导数在解决实际问题中的作用.【教学重点】:利用导数解决生活中的一些优化问题.【教学难点】:将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。【教学突破点】:利用导数解决优化问题的基本思路:【教法、学法设计】:【教学过程设计】:教学环节教学活动设计意图(1)复习引入:提问用导数法求函数最值的基本步骤学生回答:导数法求函数最值的基本步骤为课题作铺垫.(2)典型例题讲解例1、把边长为cm的正方形纸板的四个角剪去四个相等的小正方形(如图示),折成一个无盖的盒子,问怎样做才能使盒子的容积最大?解设剪去的小方形的边长为,则盒子的为,求导数,得,选择一个学生感觉不是很难的题目作为例题,令得或,其中不合题意,故在区间内只有一个根:,让学生自己体验一下应解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案显然,因此,当四角剪去边长为cm的小正方形时,做成的纸盒的容积最大.用题中最优化化问题的解法。(3)利用导数解决优化问题的基本思路:1、生活中的优化问题转化为数学问题2、立数学模型(勿忘确定函数定义域)3、利用导数法讨论函数最值问题使学生对该问题的解题思路清析化。(4)加强巩固1例2、铁路AB段长100千米,工厂C到铁路的距离AC为20千米,现要在AB上找一点D修一条公路CD,已知铁路与公路每吨千米的运费之比为3:5,问D选在何处原料从B运到C的运费最省?解:设AD的长度为x千米,建立运费y与AD的长度x之间的函数关系式,则CD=,BD=100-x,公路运费5k元/Tkm,铁路运费3k元/Tkmy=,求出f'(x)=,令f’(x)=0,得3600+9x2=25x2解得x1=15,x2=-15(舍去), y(15)=330ky(0)=400k,y(100)≈510k∴原料中转站D距A点15千米时总运费最省。使学生能熟练步骤.(5)加强巩固2例3、某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶...