互动课堂重难突破一、平行线等分线段定理平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.用符号语言表述是:已知abc∥∥,直线m、n分别与a、b、c交于点A、B、C和A′、B′、C′(如图1-1-2),如果AB=BC,那么A′B′=B′C′.图1-1-2对于定理的证明,如图1-1-3所示,分mn∥和m不平行于n两种情况证明.当mn∥时,直接运用平行四边形加以证明;当m不平行于n时,利用辅助线构造相似三角形,进而得到关系式.图1-1-3定理的条件是a、b、c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a、b、c相交,即被平行线a、b、c所截.平行线的条数还可以更多.应当注意定理图形的变式:对于三条平行线截两条直线的图形,要注意以下变化(如图1-1-4):如果已知l1l∥2l∥3,AB=BC,那么根据定理就可以直接得到其他直线上的线段相等.也就是说,直线DE的位置变化不影响定理的结论.图1-1-4图1-1-5利用本定理可将一线段分成n等份,也可以证明线段相等或转移线段的位置.平行线等分线段定理的逆命题是:如果一组直线截另一组直线成相等的线段,那么这组直线平行.这一命题是错误的,如图1-1-5.二、平行线等分线段定理的推论平行线等分线段定理的推论有两个,其中一个是经过三角形一边的中点,与另一边平行的直线必平分第三边;另一个是经过梯形一腰的中点,与底边平行的直线必平分另一腰.这两个推论的证明如下:推论1:如图1-1-6(1),在△ACC′中,AB=BC,BB′∥CC′交AC′于B′点.求证:B′是AC′的中点.证明:如图1-1-6(2),过A作BB′与CC′的平行线a,分别双向延长线段BB′、CC′,得直线b、c.ab∥c∥∥,AB=BC,∴由平行线等分线段定理,有AB′=B′C′,即B′是AC′的中点.图1-1-6推论2:如图1-1-7(1),已知在梯形ACC′A′中,AA′∥CC′,AB=BC,BB′∥CC′.求证:B′是A′C′的中点.证明: 梯形ACC′A′中AA′∥CC′,BB′∥CC′,∴AA′∥BB′∥CC′.又 AB=BC,分别延长AA′、BB′、CC′为a、b、c,如图1-1-7.∴由平行线等分线段定理,有A′B′=B′C′,即B′是A′C′的中点.图1-1-7三、刨根问底问题平行线等分线段定理与它的两个推论之间有着密切的联系,那么如何理解这种联系?探究:只要将平行线等分线段定理的图形中的直线只留下交点之间的部分,即可产生两个推论的图形;或者将两个推论中的线段延长成为直线,也可变成平行线等分线段定理的图...