第三课时平面与平面平行的性质一、教学目标:1、知识与技能掌握两个平面平行的性质定理及其应用2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。二、教学重点、难点重点:平面与平面平等的性质定理难点:平面与平面平等的运用三、教学方法讲录结合教学过程教学内容师生互动设计意图新课导入1.直线和平面平行的性质2.平面和平面平行的性质3.线线平等线面平行→面面平行师生共同复习.教师点出主题.复习巩固探索新知平面和平面平行的性质1.思考:(1)两个平面平行,那么其中一个平面内的直线与另一个面具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一个平面内的直线具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一平面内的直线在什么条件下不平行?2.例1如图,已知平面,,满足//,a,b,证:a∥b.证明:因为ra,rb,所以a,b.又因为//,师:请同学们思考:两个平面平行,那么其中一个平面内的直线与另一面具有什么关系?生:借助长方体模型可以发现,若平面AC和平面A′C′平行,则两面无公共点,那么出就意味着平面AC内任一直线BD和平面A′C′也无公共点,即直线BD和平面A′C′平行.师:用式子可表示为//,a//.用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行于另一平面.(板书)生:由问题知直线BD与平面A′C′平行.BD与平面A′C′没有公共点.也就是说,BD与平面A′C′内的所有直线没有公共点.因此,直线BD与平面A′C′内的所有直线要么是异面直线,要么是平行直新教材常常要将面面平行转化为线面平行讨论,但没有给出结论,故补充,只是不作太多强调.加深对知识的理解1所以a、b没有公共点,又因为a、b同在平面内,所以a∥b.3.定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.上述定理告诉我们,可以由平面与平面平行得出直线与直线平行.线.生:由问题2知要两条直线平行,只要他们共面即可.师:我们把刚才这个结论用符号表示,即是例5的证明.师生共同完成并得出性质定理.师引导学生得出结论:两个平行平面的判定定理与性质定理的作用,要害都集中在“平行”二字上,判定定理解决的问题是:在什么样的条件下两个平面平行.性质定理说明的问题是:在什么样的条件下...