小结与复习优翼课件第21章二次函数与反比例函数要点梳理考点讲练课堂小结课后作业九年级数学上(HK)教学课件要点梳理一般地,形如(a,b,c是常数,__)的函数,叫做二次函数.y=ax2+bx+ca≠0[注意](1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.1.二次函数的概念二次函数y=a(x-h)2+ky=ax2+bx+c开口方向对称轴顶点坐标最值a>0a<0增减性a>0a<02.二次函数的图象与性质:a>0开口向上a<0开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x↗y;↘在对称轴右边,x↗y↗在对称轴左边,x↗y;↗在对称轴右边,x↗y↘2bxa24(,)24bacbaay最小=244acbay最大=244acba3.二次函数图像的平移y=ax22()yaxh左、右平移左加右减2()yaxhk上、下平移上加下减y=-ax2写成一般形式2yaxbxc沿x轴翻折4.二次函数表达式的求法1.一般式法:y=ax2+bx+c(a≠0)2.顶点法:y=a(x-h)2+k(a≠0)3.交点法:y=a(x-x1)(x-x2)(a≠0)5.二次函数与一元二次方程的关系二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图像和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<06.二次函数的应用1.二次函数的应用包括以下两个方面(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解.2.一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.7.反比例函数的概念定义:形如________(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.三种表达式方法:或xy=kx或y=kx-1(k≠0).防错提醒:(1)k≠0;(2)自变量x≠0;(3)函数y≠0.kyxkyx8.反比例函数的图象和性质(1)反比例函数的图象:反比例函数(k≠0)的图象是,它既是轴对称图形又是中心对称图形.反比例函数的两条对称轴为直线和;对称中心是:.双曲线原点kyxy=xy=-x(2)反比...