1.能够理解和掌握圆周角定理的推论,了解圆周角和直径的关系以及圆内接四边形的概念;(重点)2.培养学生观察、分析及理解问题的能力,经历猜想、推理、验证等环节,获得正确的学习方式.(难点)一、情境导入如图,一把直角三角板的顶点A、B在⊙O上,边BC、AC与⊙O交于点D、E,已知∠C=30°,那么此时∠AED的大小是多少呢,它的大小跟三角板的∠B有什么样的关系呢?二、合作探究探究点一:圆周角定理的推论1【类型一】利用90°的圆周角对应的弦是直径进行相关计算或证明如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是______.解析:连接AC. 点A、B、C、D都在⊙O上,∠ABC=90°,∴AC是⊙O的直径.∴∠ADC=90°. AD=12,CD=5,∴AC==13.故⊙O的直径的长是13.方法总结:在圆中,熟练运用圆周角定理的推论:90°的圆周角所对的弦是直径是解决此类题目的关键.【类型二】作辅助线构造直角三角形解决问题如图,在△ABC中,AB=AC,D是BC边上的中点,过A,C,D三点的圆交BA的延长线于点E,连接EC.(1)求证:∠E=90°;(2)若AB=6,BC=10,求AE的长.解析:(1)连接AD.根据等腰三角形“三线合一”的性质知∠ADC=∠ADB=90°,从而知点A,C,D在以AC为直径的圆上,再根据圆周角定理可得答案.(2)证△BAD∽△BCE得,将有关线段长度代入计算可得.解:(1)连接AD. AB=AC,D是BC的中点,∴AD⊥BC,即∠ADC=∠ADB=90°,∴点A,C,D在以AC为直径的圆上.∴∠E=90°.(2) BC=10,∴BD=BC=5. ∠B=∠B,∠ADB=∠E=90°,∴△BAD∽△BCE.∴,即,解得AE=方法总结:在解决圆的问题时,如果有直径往往考虑作辅助线,构造直径所对的圆周角.探究点二:圆内接四边形及圆周角定理的推论2【类型一】圆内接四边形性质的运用如图,四边形ABCD内接于⊙O,点E是CB的延长线上一点,∠EBA=125°,则∠D=()A.65°B.120°C.125°D.130°解析: ∠EBA=125°,∴∠ABC=180°-125°=55°. 四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∴∠D=180°-55°=125°.故选C.方法总结:解决问题关键是掌握圆内接四边形的对角互补这一性质.【类型二】圆内接四边形与圆周角定理的综合如图,在⊙O的内接四边形ABCD中,∠BOD=120°,那么∠BCD是()A.120°B.100°C.80°D.60°解析: ∠BOD=120°,∴∠A=60°,∴∠C=180°-60°=120°,故选A.方法总结:解决问题关键是掌握圆内接四边形的对角互补和圆周角的性质.【类型三】圆内接四边形...